
Draft: Work in Progress
DRAFT

General Mission Analysis Tool (GMAT)
Architectural Speci�cation

The GMAT Development Team
Goddard Space Flight Center Thinking Systems, Inc.

Codes 583 and 595 6441 N Camino Libby
Greenbelt, Maryland 20771 Tucson, Arizona 85718

March 12, 2008

Draft: Work in Progress

Draft: Work in Progress

Contents

Preface xv

I System Architecture Overview 1

1 Introduction 3
1.1 The Tool . 3
1.2 Design Criteria . 4

1.2.1 MATLAB Accessibility . 4
1.2.2 User Extensibility . 4
1.2.3 Formation Modeling . 5
1.2.4 Parallel Processing Capabilities . 5
1.2.5 Open Source Availability . 5

1.3 Design Approach . 5
1.3.1 Modularity . 5
1.3.2 Loose Coupling . 5
1.3.3 Late Binding . 6
1.3.4 Generic Access . 6

1.4 Document Structure and Notations . 6

2 The GMAT Design Approach 7
2.1 Approach to Meeting Requirements . 7
2.2 GMAT's Design Philosophy . 7
2.3 Extendability Considerations . 7
2.4 Platform Considerations . 7

3 System Architecture Overview 9
3.1 The GMAT System Framework . 9

3.1.1 Package and Subpackage Descriptions . 11
3.1.2 Package Component Interactions . 14

3.2 GMAT Work�ow Overview . 17
3.2.1 The GMAT Startup Process . 17
3.2.2 Con�guring Resources . 18
3.2.3 Con�guring Commands . 22
3.2.4 Model and Mission Persistence: Script Files . 29
3.2.5 Running a Mission . 31

3.3 Summary . 33

i

Draft: Work in Progress
ii CONTENTS

II Engine Components 35
4 The Moderator 39

4.1 Moderator Design Principles . 39
4.1.1 Moderator Responsibilities . 39
4.1.2 The Mediator Pattern Employed in the Moderator . 40

4.2 Moderator Design . 42
4.2.1 Class Details . 42

4.3 Usage and Modi�cation . 46

5 The Sandbox 47
5.1 Design Principles . 47

5.1.1 Sandbox Responsibilities . 47
5.2 Design . 47

5.2.1 Class Details . 47
5.2.2 The Late Binding Strategy . 47
5.2.3 Interrupt Polling During a Run . 47

5.3 Usage and Modi�cation . 47

6 The Factory Manager 49
6.1 Design Principles . 49

6.1.1 Factory Manager Responsibilities . 49
6.1.2 The Abstract Factory Pattern, Factory Subclasses, and the Factory Manager 49

6.2 Design . 49
6.2.1 Class Details . 49
6.2.2 Design of the Factory Classes . 49

6.3 Usage and Modi�cation . 49

7 The Con�guration Manager 51
7.1 Design Principles . 51

7.1.1 Con�guration Manager Responsibilities . 51
7.2 Design . 51

7.2.1 Class Details . 51
7.3 Usage and Modi�cation . 51

8 The Publisher 53
8.1 Design Principles . 53

8.1.1 Publisher Responsibilities . 53
8.2 Design . 53

8.2.1 Class Details . 53
8.3 Usage and Modi�cation . 53

III Model Components 55
9 The GmatBase Class, Constants, and De�ned Types 57

9.1 De�ned Data Types . 57
9.2 Error Handling in GMAT . 57
9.3 GmatBase . 58

9.3.1 GmatBase Attributes and Methods . 58
9.3.2 Setting GmatBase Properties . 68
9.3.3 Serializing GmatBase Objects . 70

Draft: Work in Progress
CONTENTS iii

9.3.4 GmatBase Derivatives . 73
9.4 Namespaces . 75
9.5 Enumerations . 75

9.5.1 The ParameterType Enumeration . 75
9.5.2 The WrapperDataType Enumeration . 76
9.5.3 The ObjectType Enumeration . 76
9.5.4 The RunState Enumeration . 76

10 Utility Classes and Helper Functions 79
10.1 The MessageInterface . 79
10.2 Exception Classes . 79
10.3 Mathematical Utilities . 79

10.3.1 The Rvector and Rmatrix Classes . 79
10.3.2 Interpolators . 79

10.4 The GmatStringUtil Namespace . 79

11 The Space Environment 81
11.1 Components of the Model . 81
11.2 The SpacePoint Class . 82
11.3 The Solar System Elements . 84

11.3.1 The SolarSystem Class . 84
11.3.2 The CelestialBody Class Hierarchy . 84

11.4 The PlanetaryEphem Class . 84

12 Coordinate Systems 85
12.1 Introduction . 85
12.2 Coordinate System Classes . 85

12.2.1 The CoordinateSystem Class . 86
12.2.2 The AxisSystem Class Hierarchy . 87
12.2.3 CoordinateSystem and AxisSystem Collaboration . 89
12.2.4 The SpacePoint Class . 91

12.3 Con�guring Coordinate Systems . 91
12.3.1 Scripting a Coordinate System . 91
12.3.2 Default Coordinate Systems . 94

12.4 Coordinate System Integration . 94
12.4.1 General Considerations . 95
12.4.2 Creation and Con�guration . 95
12.4.3 Sandbox Initialization . 95
12.4.4 Initial States . 96
12.4.5 Forces and Propagators . 97
12.4.6 Maneuvers . 99
12.4.7 Parameters . 99
12.4.8 Coordinate Systems and the GUI . 99

12.5 Validation . 100
12.5.1 Tests for a LEO . 100
12.5.2 Tests for a Libration Point State . 102
12.5.3 Tests for an Earth-Trailing State . 102

12.6 Some Mathematical Details . 102
12.6.1 De�ning the Coordinate Axes . 102
12.6.2 Setting Directions in GMAT . 102

13 SpaceObjects: Spacecraft and Formation Classes 105

Draft: Work in Progress
iv CONTENTS

13.1 Component Overview . 105
13.2 Classes Used for Spacecraft and Formations . 107

13.2.1 Design Considerations . 108
13.2.2 The SpaceObject Class . 110
13.2.3 The PropState Class . 113

13.3 The Spacecraft Class . 113
13.3.1 Internal Spacecraft Members . 114
13.3.2 Spacecraft Members . 114

13.4 Formations . 116
13.5 Conversion Classes . 116

13.5.1 The Converter Base Class . 117
13.5.2 Time Conversions . 119
13.5.3 Coordinate System Conversions . 120
13.5.4 State Representation Conversions . 122

13.6 Conversions in SpaceObjects . 124
13.6.1 SpaceObject Conversion Flow for Epoch Data . 124
13.6.2 SpaceObject Conversion Flow for State Data . 125

14 Spacecraft Hardware 129
14.1 The Hardware Class Structure . 129
14.2 Finite Maneuver Elements . 129

14.2.1 Fuel tanks . 129
14.2.2 Thrusters . 129

14.3 Sensor Modeling in GMAT . 129
14.4 Six Degree of Freedom Model Considerations . 129

15 Attitude 131
15.1 Introduction . 131
15.2 Design Overview . 131
15.3 Class Hierarchy Summary . 132
15.4 Program Flow . 135

15.4.1 Initialization . 135
15.4.2 Computation . 136

16 Script Reading and Writing 137
16.1 Loading a Script into GMAT . 137

16.1.1 Comment Lines . 139
16.1.2 Object De�nition Lines . 140
16.1.3 Command Lines . 141
16.1.4 Assignment Lines . 142

16.2 Saving a GMAT Mission . 143
16.3 Classes Used in Scripting . 144

16.3.1 The Script Interpreter . 145
16.3.2 The ScriptReadWriter . 149
16.3.3 The TextParser Class . 152

16.4 Call Sequencing for Script Reading and Writing . 154
16.4.1 Script Reading Call Sequence . 154
16.4.2 Script Writing Call Sequence . 160

16.5 Interpreting GMAT Functions . 163

17 The Graphical User Interface 165
17.1 wxWidgets . 165

Draft: Work in Progress
CONTENTS v

17.2 GmatDialogs . 165
17.3 The Interpreter Classes . 165

18 External Interfaces 167
18.1 The MATLAB Interface . 167
18.2 GMAT Ephemeris Files . 167

19 Calculated Parameters and Stopping Conditions 169
19.1 Parameters . 169
19.2 Stopping Conditions and Interpolators . 169

19.2.1 Stopping Conditions . 169
19.2.2 Interpolators . 171

20 Propagators = Integrators + Forces 173
20.1 Propagator Overview . 173

20.1.1 The Equations of Motion . 173
20.1.2 Division of Labor: Integrators and Forces . 173

20.2 Integrators . 173
20.3 The GMAT Force Model . 173

20.3.1 The PhysicalModel Class . 173
20.3.2 The ForceModel Class . 173
20.3.3 Applying Forces to Spacecraft . 173

20.4 The State Vector . 173
20.5 The PropSetup Container . 173

21 Force Modeling in GMAT 175
21.1 Component Forces . 175

21.1.1 Gravity from Point Masses . 175
21.1.2 Aspherical Gravity . 175
21.1.3 Solar Radiation Pressure . 175
21.1.4 Atmospheric Drag . 175
21.1.5 Engine Thrust . 175

22 Maneuver Models 177

23 Mission Control Sequence Commands 179
23.1 Command Overview . 179
23.2 Structure of the Sequence . 179

23.2.1 Command Categories . 179
23.2.2 Command Sequence Structure . 180
23.2.3 Command�Sandbox Interactions . 181

23.3 The Command Base Classes . 181
23.3.1 List Interfaces . 181
23.3.2 Object Interfaces . 183
23.3.3 Other Interfaces . 183

23.4 Script Interfaces . 183
23.4.1 Data Elements in Commands . 183
23.4.2 Command Support for Parsing and Wrappers . 186
23.4.3 Data Type Wrapper Classes . 186
23.4.4 Command Scripting Support Methods . 187

23.5 Executing the Sequence . 187
23.5.1 Initialization . 187

Draft: Work in Progress
vi CONTENTS

23.5.2 Execution . 187
23.5.3 Finalization . 188
23.5.4 Other Details . 188

24 Speci�c Command Details 189
24.1 Command Classes . 189

24.1.1 The GmatCommand Class . 189
24.1.2 Branch Commands . 190
24.1.3 Functions . 191

24.2 Command Details . 191
24.2.1 The Assignment Command . 191
24.2.2 The Propagate Command . 192
24.2.3 The Create Command . 199
24.2.4 The Target Command . 199
24.2.5 The Optimize Command . 199

25 Solvers 201
25.1 Overview . 201
25.2 Solver Class Hierarchy . 201
25.3 The Solver Base Class . 202

25.3.1 Solver Enumerations . 203
25.3.2 Solver Members . 204

25.4 Scanners . 206
25.5 Targeters . 206

25.5.1 Di�erential Correction . 207
25.5.2 Broyden's Method . 209

25.6 Optimizers . 209
25.6.1 The Optimizer Base Class . 210
25.6.2 Internal GMAT optimizers . 212
25.6.3 External Optimizers . 212

25.7 Command Interfaces . 227
25.7.1 Commands Used by All Solvers . 227
25.7.2 Commands Used by Scanners . 231
25.7.3 Commands Used by Targeters . 232
25.7.4 Commands Used by Optimizers . 233

26 Inline Mathematics in GMAT 237
26.1 Scripting GMAT Mathematics . 237
26.2 Design Overview . 239
26.3 Core Classes . 242

26.3.1 MathTree and MathNode Class Hierarchy Summary 243
26.3.2 Helper Classes . 245

26.4 Building the MathTree . 247
26.5 Program Flow and Class Interactions . 247

26.5.1 Initialization . 249
26.5.2 Execution . 250

27 GMAT and MATLAB Functions 253
27.1 General Design Principles . 254

27.1.1 The Function class . 256
27.1.2 The FunctionManager . 256

27.2 GMAT Functions . 257

Draft: Work in Progress
CONTENTS vii

27.2.1 GMAT Function Design Principles . 257
27.2.2 Steps Followed for the Sample Script . 263
27.2.3 Global Data Handling: Another Short Example . 297
27.2.4 Additional Notes and Comments . 300
27.2.5 Design . 303
27.2.6 GmatFunction Details: Construction, Initialization, and Execution 305
27.2.7 Usage and Modi�cation . 313

27.3 MATLAB Functions . 313
27.3.1 Design . 313
27.3.2 Usage and Modi�cation . 313

27.4 Internal Functions . 313
27.4.1 Design . 313
27.4.2 Usage and Modi�cation . 313

27.5 Related Classes: Command Classes . 313
27.5.1 Design for the CallFunction Command . 313
27.5.2 Design for the Create Command . 313
27.5.3 Design for the Global Command . 313

27.6 Related Classes: Engine Components . 313

28 Adding New Objects to GMAT 315
28.1 Shared Libraries . 315
28.2 Adding Classes to GMAT . 315

28.2.1 Designing Your Class . 315
28.2.2 Creating the Factory . 315
28.2.3 Bundling the Code . 316
28.2.4 Registering with GMAT . 316

28.3 An Extensive Example . 316

IV Appendices 317
A Uni�ed Modeling Language (UML) Diagram Notation 319

A.1 Package Diagrams . 319
A.2 Class Diagrams . 320
A.3 Sequence Diagrams . 322
A.4 Activity Diagrams . 322
A.5 State Diagrams . 324

B Design Patterms Used in GMAT 325
B.1 The Singleton Pattern . 325

B.1.1 Motivation . 325
B.1.2 Implementation . 326
B.1.3 Notes . 326

B.2 The Factory Pattern . 326
B.2.1 Motivation . 326
B.2.2 Implementation . 326

B.3 The Observer Pattern . 326
B.4 The Mediator Pattern . 326

B.4.1 Motivation . 326
B.4.2 Implementation . 327
B.4.3 Notes . 327

Draft: Work in Progress
viii CONTENTS

B.5 The Adapter Pattern . 327
B.6 The Model-View-Controller (MVC) Pattern . 327

C Command Implementation: Sample Code 329
C.1 Sample Usage: The Maneuver Command . 329
C.2 Sample Usage: The Vary Command . 330

D GMAT Software Development Tools 333
D.1 Windows Build Environment . 333
D.2 Macintosh Build Environment . 333
D.3 Linux Build Environment . 333

E De�nitions and Acronyms 335
E.1 De�nitions . 335
E.2 Acronyms . 336

Draft: Work in Progress

List of Figures

1.1 A Sample GMAT Run . 4

3.1 Top Level GMAT Packages: Logical Grouping . 10
3.2 Packages, Subpackages, and Some Details . 12
3.3 Subsystem Interactions in GMAT . 15
3.4 User Interactions . 16
3.5 The Startup Process . 17
3.6 Con�guration Example: Spacecraft . 19
3.7 The Spacecraft Con�guration Panel . 20
3.8 Con�guration Example: Creating the Spacecraft . 21
3.9 Con�guration Example: Setting Spacecraft Properties . 22
3.10 Con�guration Example: Saving the Spacecraft . 23
3.11 The Mission Tree in GMAT's GUI . 24
3.12 Con�guration Example: A Mission Control Sequence Command 24
3.13 Command Creation Example: Creating a Maneuver Command 26
3.14 The Maneuver Command Con�guration Panel . 27
3.15 Command Con�guration Example: Con�guring the Maneuver Command 28
3.16 The Sequence followed to Run a Mission . 32
3.17 Results of the Script Example, Run on Linux . 33

4.1 Program Flow and the Moderator . 40
4.2 The Moderator in its Environment . 42
4.3 State Transitions in the Moderator . 45

5.1 Initialization of a Control Sequence in the Sandbox . 48

6.1 The Factory Manager and Some Factories . 50

9.1 Class Hierarchy for Gmat's Burn Resources . 69
9.2 Parameter Setting for Listing 9.1 . 70
9.3 Flow in the GetGeneratingString() Method . 72
9.4 Classes Derived from GmatBase . 73

11.1 Objects in the GMAT Model . 82
11.2 The SpacePoint Class . 83

12.1 Coordinate System Classes in GMAT . 86
12.2 Top level AxisSystem Derived Classes . 87
12.3 Inertial Axis Classes . 88
12.4 Dynamic Axis Classes . 88
12.5 GMAT Procedure for a Generic Coordinate Transformation 90
12.6 The SpacePoint Class Hierarchy . 92

ix

Draft: Work in Progress
x LIST OF FIGURES

12.7 Coordinate System Creation and Con�guration Sequence . 96
12.8 Control Flow for Transformations During Propagation . 98
12.9 Calculating the Direction Used for Maneuvers . 99
12.10 The Updated Parameter Subpanel . 100
12.11 Addition of the Propagation Origin . 101

13.1 Class Structure for Spacecraft and Formations . 109
13.2 Classes Used to Provide Views of the SpaceObject State Data 118
13.3 Classes Used to Convert Epoch Data . 119
13.4 Classes Used to Convert Between Coordinate Systems . 121
13.5 Classes Used to Convert State Representations . 123
13.6 Procedure for Retrieving or Setting a Formatted Epoch . 125
13.7 Procedure for Retrieving or Setting a Formatted State . 126
13.8 Procedure for Setting a Single Element in the State . 127

15.1 Attitude Classes . 133

16.1 Sequence Followed when Loading a Script into GMAT . 138
16.2 Scripting Interfaces in the User Classes . 140
16.3 Sequence Followed when Writing a Script . 144
16.4 Sequence Followed by GmatBase::GetGeneratingString() when Writing a Script 145
16.5 Classes in the ScriptInterpreter Subsystem . 146
16.6 Overview of Interpreter Class Interactions when Reading a Script 155
16.7 Interpreter Class Interactions when Reading a Comment Block 156
16.8 Interpreter Class Interactions when Reading an Object De�nition Block 157
16.9 Interpreter Class Interactions when Reading a Command Block 159
16.10 Interpreter Class Interactions when Reading an Assignment Block 161
16.11 Calls Made when Writing a Script . 162
16.12 Interpreting a Function Control Sequence . 164

19.1 Stopping Condition Classes . 170

23.1 GMAT Command Sequence in the GUI . 181
23.2 Base Classes in the Command Subsystem . 182
23.3 Calls Made to Build and Validate Commands . 184
23.4 Parameter Wrappers Used by Commands . 188

24.1 GMAT Command Classes . 190
24.2 Executing the Propagate Command . 195
24.3 Algorithm Used to Stop Propagation . 196
24.4 Propagate Command Details . 198

25.1 The Solver Subsystem . 202
25.2 The Solver Base Class . 203
25.3 State Transitions for the Di�erential Corrector . 207
25.4 State Transitions for Optimization . 210
25.5 The Optimizer Base Class . 211
25.6 GMAT state transitions when running the FminconOptimizer Optimizer 212
25.7 GMAT Classes Used with External Optimizers . 214
25.8 Interface Classes used by the FminconOptimizer . 216
25.9a Initialization Call Sequence for MATLAB's fmincon Optimizer 218
25.9b Execution Call Sequence for MATLAB's fmincon Optimizer 219

Draft: Work in Progress
LIST OF FIGURES xi

25.9c FminconOptimizer Nested State Transition Details . 220
25.10 Command Classes used by the Solvers . 228
25.11 Command Classes Required by All Solvers . 229
25.12 Command Classes Used by Scanners . 232
25.13 Command Classes Used by Targeters . 232
25.14 Command Classes Used by Optimizers . 234

26.1 Tree View of the Longitude of Periapsis Calculation . 239
26.2 Tree View of the Satellite Separation Calculation . 240
26.3 Tree View of the Matrix Calculation in Example 3 . 241
26.4 Classes Used to Implement GMAT Mathematics . 242
26.5 Control Flow for Parsing an Equation . 247
26.6 Parser Recursion Sequence . 248
26.7 MathTree Initialization in the Sandbox . 249
26.8 Evaluation of a MathTree Assignment . 250

27.1 Classes Used in the Function Implementations . 254
27.2 Class diagram for the Function Classes . 255
27.3 A MathTree with Two Function Calls. 268
27.4 Initializing a Control Sequence . 271
27.5 The MathTree for the Assignment command in the magnitude GmatFunction 280
27.6 Class diagram for the GmatFunction Class . 304
27.7 CallFunction Initialization Details . 305
27.8 Message Flow for Interpreting the Function Control Sequence 307
27.9 Initialization of a Control Sequence in the Sandbox (Copied from Figure 5.1) 308
27.10 Message Flow for Initializing in the FunctionManager . 309
27.11 The Sequence Followed to Run a GmatFunction Command 311

A.1 GMAT Packaging, Showing Some Subpackaging . 320
A.2 Solver Classes . 321
A.3 A Sequence Diagram . 322
A.4 An Activity Diagram . 323
A.5 A State Diagram . 324

B.1 Structure of a Singleton . 325

Draft: Work in Progress

List of Tables

3.1 Key Elements of the GMAT Engine . 37

9.1 Data Types De�ned for GMAT . 57
9.2 Arrays Holding De�ned Type Names . 63
9.3 Constants Holding Unde�ned Values . 64
9.4 The WriteMode Enumeration . 71
9.5 The ParameterType Enumeration . 75
9.6 The WrapperDataType Enumeration . 76
9.7 The ObjectType Enumeration . 77
9.8 The RunState Enumeration . 78

12.1 Coordinate System Parameters . 93
12.2 Default Coordinate Systems de�ned in GMAT . 95
12.3 Coordinate Systems Used by Individual Forces . 98
12.4 Coordinate Conversions for an orbit near the Earth . 101
12.5 Coordinate Conversions for an orbit near the Earth/Moon-Sun L2 Point 102
12.6 Coordinate Conversions for an Earth-Trailing state . 103

23.1 Script Examples of Parameters Used in Commands . 187

24.1 Assignment Command . 191
24.2 Propagate Command . 192

25.1 Options for the FminconOptimizer Solver . 217

26.1 Operators and Operator Precedence in GMAT . 238

27.1 Status at Start of Script Parsing . 263
27.2 Status after Parsing the Objects . 264
27.3 Status after Parsing the First Command . 265
27.4 Status after Parsing the Propagate Command . 265
27.5 Status after Parsing the CallFunction Command . 266
27.6 Function Properties after Parsing the First CallFunction . 266
27.7 Status after Parsing the next two Commands . 267
27.8 Function Properties after Parsing the First Two Assignment Lines 267
27.9 Status after Parsing the Assignment Line containing Two Calls to the cross Function 267
27.10Function Properties after Parsing the cross Assignment Line 268
27.11Status after Parsing the Call to the magnitude Function . 269
27.12Function Properties after Parsing the magnitude Line . 269
27.13Status after Parsing the Script . 270
27.14Function Properties after Parsing the Script . 270
27.15Status Immediately Before Initialization Starts . 272

xii

Draft: Work in Progress
LIST OF TABLES xiii

27.16Status Immediately After Cloning into the Sandbox . 273
27.17GmatFunction Status at the Start of Control Sequence Initialization 274
27.18The Sandbox Maps . 276
27.19GmatFunction Status after Setting the GOS and SOM . 277
27.20GmatFunction Status after Building the LoadCartState FCS 278
27.21GmatFunction Status after Detecting the First Nested CallFunction 279
27.22GmatFunction Status after Parsing the First Nested CallFunction 279
27.23GmatFunction Status after Creating the dot Function . 280
27.24GmatFunction Status after Interpreting the dot Function . 281
27.25GmatFunction Status after Interpreting the cross Function . 282
27.26Summary of the Function Interfaces . 284
27.27CallFunction Attributes Prior to First Execution . 287
27.28CallFunction Attributes After Building the Function Object Store 288
27.29CallFunction Attributes After Executing the Create commands 288
27.30CallFunction Attributes After Execution . 289
27.31CallFunction Attributes After Execution . 289
27.32Attributes of the LoadCartState GmatFunction and Subfunctions 291
27.33Attributes of the LoadCartState GmatFunction After the Executing the First Create Command291
27.34Attributes of the LoadCartState Function After the Executing the Six Assignment Commands 292
27.35The LoadCartState Function after Initializing the First CallFunction 293
27.36Attributes of the Function After Running the First magnitude Command 293
27.37LoadCartState Attributes After Running the First magnitude Command 294
27.38LoadCartState Attributes After Evaluating the dot Function in the magnitude Function . . . 294
27.39LoadCartState Attributes After Evaluating the magnitude Assignment Command 295
27.40LoadCartState Attributes After Clearing the magnitude Function 295
27.41Attributes after running the LoadCartState Function . 296
27.42The Objects in the Globals Example at the Start of Initialization 297
27.43The Objects in the Globals Example after moving the Globals 298
27.44The Objects in the Globals Example on return from InterpretGmatFunction 299
27.45The Objects in the Globals Example after Executing the Global Command in the Mission

Control Sequence . 300
27.46Object Maps used to Set References in Control Sequences . 302

Draft: Work in Progress
xiv LIST OF TABLES

Draft: Work in Progress

Preface

Welcome to the programming side of the General Mission Analysis Tool, GMAT! This document describes
the design of the GMAT system, starting from an overview of the requirements for the system and the
architecture built to meet these requirements, and proceeding through descriptions of the design for the
components that �t into this architecture.

The purpose of this document is to give the reader an understanding of the design goals and implementa-
tion of GMAT. It is written to prepare you to work with GMAT at a source code level. In this document we
present the rationale for GMAT's architectural design based on the requirements for the system, and then
construct the architecture based on that rationale.

The architectural framework is presented taking a top-down approach. First we de�ne a way to think
about GMAT's structure in terms of high level functionality, grouped into logical packages. Then we examine
key elements of these packages, and explain how they interact to complete a few typical tasks. With a few
exceptions, we do not document the details of the classes and objects in the system. That task is left to the
GMAT API, generated using the Doxygen[doxygen] open source tool.

Intended Audience
This document is written primarily for people interested in working with GMAT's source code, either to
enhance the system by adding new components, to debug existing features in a way consistent with GMAT's
design, to gain insight into pieces of the system that they may want to use elsewhere, or to learn how GMAT
was assembled to help design a similar system. The primary audience for this document is the software
development community � programmers, system analysts, and software architects.

Analysts that are interested in understanding how GMAT performs its tasks can gain an understanding of
the system by reading the �rst few chapters of this document. If some element of GMAT is not behaving the
way you expect, you might also want to look up the description of that object in later chapters. In addition,
many of the details about how calculations are performed in GMAT are contained in the Mathematical
Speci�cations[MathSpec]. If you are more interested in understanding how to use GMAT as an analyst, you
might want to read the User's Guide[UsersGuide] rather than this document.

Assumed Background
The GMAT design was developed using object-oriented technologies. The design is presented using Uni�ed
Modeling Language (UML) diagrams, using a style similar to that presented in UML Distilled[fowler].
You can �nd a description of the use of UML diagrams as used in this document in Appendix A. While you
don't need to be an expert in either of these �elds to understand the content presented here, you will bene�t
from some preliminary reading at an introductory level.

The GMAT design leverages several industry standard design patterns. The patterns used are summarized
in Appendix B. If you are unfamiliar with the design pattern literature, you'd bene�t from reading � or at
least skimming � some of the standard texts (see, for example, Design Patterns[GoF]).

xv

Draft: Work in Progress
xvi PREFACE

GMAT is written in C++. On the rare occasions that actual code is presented in this document, that
code is in C++. As you go deeper into the GMAT's design, the underlying coding language will become more
important. Therefore, if you plan to work with the GMAT source code, you'll need to have an understanding
of the C++ programming language.

In addition, the standard GMAT GUI is written using the wxWidgets[wx] GUI toolkit. If you plan to
work with GMAT's GUI code, you'll want to bo some preliminary exploration of wxWidgets. A good place
to start is the wxWidgets book[smart], which, while slightly out of date at this writing, does present a rather
complete description of wxWidgets.

Useful Preliminaries
This document describes the GMAT source code � sometimes at a very high level, but also at times at a
rather low level of detail. You'll bene�t from having a copy of the current source available for viewing at
times when the descriptions found here are not as clear as you'd like. You can retrieve the source code either
at the GMAT website (http://gmat.gsfc.nasa.gov/downloads/source.html) or from the download pages or
the code repository at SourceForge (http://sourceforge.net/projects/gmat).

This document does not describe the detailed design of every class in GMAT, in part because the resulting
document would be extremely large, but also because GMAT is an evolving system. New features are being
added to the program as the system grows, so the best view of the details of GMAT can be seen by examining
the current code base. If you want a structured view into these details, you should run the open source tool
Doxygen[doxygen] on the source code tree. Doxygen will create an extensive hyperlinked reference for the
GMAT code that you can browse using any HTML browser.

Draft: Work in Progress

Part I

System Architecture Overview

1

Draft: Work in Progress

Draft: Work in Progress

Chapter 1

Introduction

Darrel J. Conway
Thinking Systems, Inc.

Early in 2002, Goddard Space Flight Center (GSFC) began to identify requirements for the �ight dy-
namics software needed to �y upcoming missions that use formations of spacecraft to collect data. These
requirements ranged from low level modeling features to large scale interoperability requirements. In 2003
we began work on a system designed to meet these requirements; this system is GMAT.

The General Mission Analysis Tool (GMAT) is a general purpose �ight dynamics modeling tool built on
open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively.
GMAT can be run through either a fully functional Graphical User Interface (GUI) or as a command
line program with minimal user feedback. The system is built and runs on Microsoft Windows, Linux,
and Macintosh OS X platforms. The GMAT GUI is written using wxWidgets, a cross platform library of
components that streamlines the development and extension of the user interface.

Flight dynamics modeling is performed in GMAT by building components that represent the players in
the analysis problem that is being modeled. These components interact through the sequential execution
of instructions, embodied in the GMAT Mission Sequence. A typical Mission Sequence will model the
trajectories of a set of spacecraft evolving over time, calculating relevant parameters during this propagation,
and maneuvering individual spacecraft to maintain a set of mission constraints as established by the mission
analyst.

All of the elements used in GMAT for mission analysis can be viewed in the GMAT GUI or through a
custom scripting language. Analysis problems modeled in GMAT are saved as script �les, and these �les can
be read into GMAT. When a script is read into the GMAT GUI, the corresponding user interface elements
are constructed in the GMAT GUI.

The GMAT system was developed from the ground up to run in a platform agnostic environment. The
source code compiles on numerous di�erent platforms, and is regularly exercised running on Windows, Linux,
and Macintosh computers by the development and analysis teams working on the project. The system can
be run using either a graphical user interface, written using the open source wxWidgets framework, or from
a text console.

The GMAT source code was written using open source tools. GSFC has released the code using the
NASA open source license.

1.1 The Tool
Figure 1.1 shows a sample run using GMAT on Windows XP. GMAT can be run using either a custom
scripting language or components con�gured directly from the user interface. GMAT scripting is designed
to run either from within GMAT, or from inside of the MATLAB product from MathWorks.

3

Draft: Work in Progress
4 CHAPTER 1. INTRODUCTION

Figure 1.1: A Sample GMAT Run

1.2 Design Criteria
There are several high level requirements for GMAT that drove the design of the system. These requirements
can be summarized in �ve broad categories: MATLAB Accessibility, Extensibility, Formation Modeling,
Parallel Processing, and Open Source Availability. The system is designed to run on Macintosh, Windows,
and variants of Unix (including Linux) � through a recompilation of the source.

1.2.1 MATLAB Accessibility
MATLAB is a tool used at many facilities in the aerospace community to develop new algorithms and to
prototype approaches unique to new missions under consideration. MATLAB as a system is quite �exible,
but is rather slow for precision orbit modeling work. GMAT, by design, performs detailed orbit and attitude
modeling, providing an engine that can be called from MATLAB for tasks that present performance issues
when built in the MATLAB language.

1.2.2 User Extensibility
One prime driver for the development of GMAT was to provide a tool that allows users to try new components
and models in the system without rebuilding it from scratch. This capability is partially satis�ed by the
MATLAB interface described above. Components of GMAT can also be added to the system by writing new
code that can be compiled into shared libraries and incorporated into the system at run time. All of the
operating systems GMAT supports provide native methods for this capability, and the system is designed
to make the addition of new components simple using these capabilities.

Draft: Work in Progress
1.3. DESIGN APPROACH 5

1.2.3 Formation Modeling
The current tool set used to model formations treats a formation of spacecraft as individual spacecraft,
modeled independently and then compared by matching states at speci�c epochs, either on a small scale
(taking single steps for each and then comparing the states) or on a large scale (propagating ephemerides
for each spacecraft and then going back afterwards to compare states at speci�c epochs. GMAT provides
the ability to treat a collection of spacecraft as a single entity, making the modeling more streamlined and
providing the ability to handle formations and constellations as simple entities.

1.2.4 Parallel Processing Capabilities
Some satellite analysis tasks require the execution of many separate orbit propagations, including mission
tuning (aka targeting or optimizing) and other mission re�nements, in order to adequately model the mission
scenarios under analysis. These tasks can take as many as several hundred separate runs, each consisting of
several minutes or more of run time on current hardware, in order to determine the results of the analysis
problem. GMAT is designed to enable the parallelization of these tasks across multiple processors, either
within the same computer or, eventually, across a network of computers. While the current implementation
does not leverage this capability, it is designed to make the transition to multiple processors and distributed
computing as simple as possible.

1.2.5 Open Source Availability
GMAT is available for external users in both executable and source code form, subject to the NASA Open
Source licensing agreement. This redistribution requirement drove design issues related to the selection of
external libraries and packages used by GMAT.

1.3 Design Approach
The categories described above drove the architecture of GMAT. The following paragraphs describe the
architectural elements used to address these requirements.

1.3.1 Modularity
GMAT is a complicated system. It is designed to be implemented using a �divide and conquer� approach
that uses simple components that combine to satisfy the needs of the system. This system modularity makes
the individual components simple, and also simpli�es the addition of new components into the system. In
addition, each type of resource has a well de�ned set of interfaces, implemented through C++ base classes.
New components in each category are created by implementation of classes derived from these base classes,
building core methods to implement the new functionality � for example, forces used in the force model for
a spacecraft all support an interface, GetDerivatives(), that provides the acceleration data needed to model
the force. Users can add new components by implementing the desired behavior in these interfaces and then
registering these components in the GMAT factory subsystem.

1.3.2 Loose Coupling
The modularity of the components in GMAT are implemented to facilitate �plug and play� capability for the
components that allows them to be combined easily using a set of common interfaces. Components built in the
system have simple interfaces to be able to communicate with MATLAB and with one another. Dependencies
between the components are minimized. Circular dependencies between components minimized.

Draft: Work in Progress
6 CHAPTER 1. INTRODUCTION

1.3.3 Late Binding
GMAT is designed to support running of multiple instances of a mission simultaneously in order to satisfy
parallel processing requirements. This capability is built into the system by separating the con�guration
of the components used in the mission from the objects used during execution. Con�gured objects are
copied into the running area (the �Sandbox�) and then connected together to execute the mission. The
connections between the components cannot be made until the objects are placed in the Sandbox because
the objects in the Sandbox are clones of the con�gured objects. This late binding makes parallelization
simple to implement when the system is ready for it � parallelization can be accomplished by running
multiple Sandboxes simultaneously.

1.3.4 Generic Access
GMAT components share a common base class that enforces a set of access methods that are used to
serialize the components, facilitating both �le level read and write access to the components and simplifying
communications with MATLAB and other external tools. This capability is implemented using parameter
access methods that are themselves serialized, providing descriptors for each parameter. Connections between
components are speci�ed at this level by establishing parameters that identify the connected pieces by name.
Data generated by the system is passed out of the Sandbox through a message interface, using �publish and
subscribe� design.

1.4 Document Structure and Notations
GMAT is written in ANSI C++. The system is object-oriented, makes extensive use of the standard template
library (STL), and is coded based on a style guide[shoan] so that the code conforms to a consistent set of
conventions. The source is con�guration managed in a CVS repository hosted at GSFC.

This document provides a fairly in-depth introduction to the design of the software. Throughout this
document, the architecture of the system is described using C++ nomenclature. The design of the system
is illustrated using Uni�ed Modeling Language (UML) diagrams to sketch the relationships and program
�ow elements. While this document is extensive, it does not completely document all of the intricacies of
each GMAT class. These details can be found most accurately in the source code, which is available on
request under the NASA Open Source licensing agreement. The code includes comments written in a style
compatible with the Doxygen documentation system. When the source code is processed by Doxygen, the
output is a complete reference to the GMAT Application Programmer's Interface (API).

Draft: Work in Progress

Chapter 2

The GMAT Design Approach

2.1 Approach to Meeting Requirements
2.2 GMAT's Design Philosophy
2.3 Extendability Considerations
2.4 Platform Considerations

7

Draft: Work in Progress
8 CHAPTER 2. THE GMAT DESIGN APPROACH

Draft: Work in Progress

Chapter 3

System Architecture Overview

Darrel J. Conway
Thinking Systems, Inc.

The purpose of this chapter is to introduce the key architectural elements of GMAT, and to explain at a
high level how they interact to solve mission design problems. If you are trying to understand how GMAT
works, or if you are refreshing yourself in the basics of the GMAT architecture, this chapter is where you
should start. After reading this chapter, you should have a high level understanding of how the components
in GMAT interact to perform mission analysis.

The chapter is written so that as you read further, you will obtain a deeper the view into the system
architecture. We begin by identifying the key system components and grouping them according to the
functions they perform. These groupings are referred to as �Packages� and are used to provide a framework
for the discussion about how GMAT works.

After presenting the functional GMAT's components, we present a high level view of how these com-
ponents interact and describe which components interact with each other. This description provides an
overview of how messages and data �ow in the system. The next level of detail describes how the architec-
ture handles a simple application there a user open the system, creates a spacecraft, con�gures a mission
sequence, and runs the mission.

Later chapters build on these materials. The remainder of this document is organized to take the package
descriptions presented at the start of this chapter, and present the design of the elements of these packages.
Since the document is structured that way, we'll begin this chapter by examining the logical packaging of
GMAT's components.

3.1 The GMAT System Framework
The GMAT architecture can be described as a set of components grouped into functional packages1 that
interact to model spacecraft missions. The system is built around four packages that cooperatively interact
to model spacecraft in orbit. Figure 3.1 shows an overview of this package grouping. GMAT functionality can
be broken into Program Interfaces, the core system Engine, the Model used to simulate spacecraft and their
environment, and Utilities providing core programmatic functionality. The constituents of these packages
are described throughout this document; this chapter provides a framework for the more detailed discussions
that follow.

Each of these functional categories can be broken into smaller units. The next level of decomposition
is also shown in Figure 3.1. This next level of packaging � referred to as �subpackaging� in this document
� provides a �ner grained view of the functions provided in each package. The next level of decomposition

1Note that these divisions are functional, and not enforced by any physical packaging constraints like a namespace or shared
library boundaries.

9

Draft: Work in Progress
10 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Figure 3.1: Top Level GMAT Packages: Logical Grouping

Draft: Work in Progress
3.1. THE GMAT SYSTEM FRAMEWORK 11

below the subpackages provides a view into the class structure of GMAT, as will be seen in the next few
paragraphs.

3.1.1 Package and Subpackage Descriptions
Figure 3.2 presents the packages and subpackages in a slightly di�erent format from that shown in the
last �gure. The top level packages are represented by speci�c colors matching those in Figure 3.12. The
package names are listed at the top of each column, with the subpackages shown indented one level from these
packages. One additional level is shown in this diagram, showing representative members of the subpackages.
The deepest level items in this �gure are classes contained in the subpackages; for example, the Executive
subpackage in the Engine package contains the Moderator, Sandbox, and Publisher classes. These elements
will be used in the discussion of how the packages interact in the next few pages of this document.

As is shown in these �gures, three of these packages can be further broken into subpackages. The following
paragraphs present an overview of the packages and their subdivisions.

Program Interfaces All two-way communications between users and external programs and GMAT are
contained in the Program Interface package. This package can be broken into four subpackages:

• User Interfaces Users view GMAT through a user interface � usually through the GMATGraphical
User Interface (GUI), but also potentially through a command line interface into GMAT called
the GMAT console application, or Console. These interfaces are contained in the UserInterface
subpackage.
GMAT's GUI is coded using the wxWidgets cross-platform library[wx]. The GUI provides a rich
environment that provides access to all of the features of GMAT through either panels customized
for each component or through a text based script. Missions saved from the GUI are saved in the
script format, and scripts loaded into the GUI populate the GUI elements so that they can be
viewed on the customized interface panels.
The console version of GMAT can be used to run script �les and generate text data with little
user interaction. The console application can run multiple scripts at once, or individual scripts
one at a time. This version of the system is currently used for testing purposes, in situations
where the overhead of the full graphical user interface is not needed.

• Interpreters The user interface components communicate with the core GMAT system through
an interface layer known as the Interpreter subpackage. This layer acts as the connection point
for both the scripting interface and the GUI into GMAT.
The Interpreter subpackage contains two speci�c interpreters: a GuiInterpreter, designed to pack-
age messages between the GUI and the GMAT engine, and the ScriptInterpreter, designed to
parse script �les into messages for the engine, and to serialize components in the engine into
script form for the purposes of saving these objects to �le.
The Interpreter subpackage is designed so that it can be extended to provide other means of
controlling the GMAT engine. All that is required for this extension is the development of a
new interpreter, and interfaces for this new component into the Moderator, a component of the
Executive subpackage in GMAT's Engine package.

• External Interfaces GMAT provides an interface that can be used to communicate with external
programs3. These interfaces are packaged in the ExternalInterfaces subpackage.

• Subscribers Users view the results of a mission run in GMAT through elements of the Subscriber
subpackage. Subscribers are used to generate views of spacecraft trajectories, plots of mission
parameters, and reports of mission data in �le form.

2This color scheme will be used for the remainder of this chapter as well.
3At this writing, the only external interface incorporated into the core GMAT code base is an interface to the MathWorks'

product MATLAB[matlab].

Draft: Work in Progress
12 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Figure 3.2: Packages, Subpackages, and Some Details
Subpackages are indicated by a cluster of diamonds
Objects and Classes are marked by a circle
Other constructs are marked by a single diamond

Draft: Work in Progress
3.1. THE GMAT SYSTEM FRAMEWORK 13

The Engine The interfaces described above exist on top of a core simulation engine used to control the
model of �ight dynamics problems in GMAT. This engine consists of the control and management
structures for the program. The elements of the model used to simulate the spacecraft mission are
introduced in the next package description. The Engine package consists of three subpackages:

• Executive The Executive subpackage contains the central processing component for GMAT (called
the Moderator), a connection point used to capture and distribute the results of a mission run
(the Publisher), and the workspace used to run a mission (the Sandbox).
The Moderator acts as the central communications hub for the GMAT engine. It receives messages
from the program interfaces through the interpreters, and determines the actions that need to be
taken based on these messages. The Moderator sends messages to the other components of the
Engine to accomplish the requested tasks.
GMAT is designed to run missions inside of a component called the Sandbox. When a user
requests a mission run, the Moderator sets up the Sandbox with the elements con�gured for the
run, and then turns control over to the Sandbox to execute the mission.
The Publisher acts as the connection between data generated in the Sandbox and the views of
these data presented to the User. It receives data or instructional messages from the components
in the Sandbox, and passes those messages to the corresponding Subscribers.

• Con�guration When GMAT builds a model, it starts by building components that will be con-
nected together based on a sequence of instructions. Each component is an instance of a GMAT
class; as they are built, these components are stored in a local repository of objects. The repos-
itory holding model components is known as the con�guration. The Con�guration subpackage
consists of this repository and an interface used to access it, called the Con�gurationManager.
The components stored in the con�guration are all derived from a base class named GmatBase,
described in Chapter 9. In GMAT, every object that a user creates and uses to simulate a
spacecraft mission is derived from this base class. The con�guration is maintained as a collection of
pointers to GmatBase objects. The Con�gurationManager works with this collection to maintain
the con�guration repository.

• Factory The model elements stored in the con�guration are created on request from the users. The
subpackage responsible for processing requests for new model elements is the Factory subpackage.
It consists of an interface into the subpackage � the FactoryManager � and a collection of factory
classes used to create speci�c types of model elements.
Each factory in GMAT creates objects based on the type requested. For example, Spacecraft
or Formation objects are created through a call is the corresponding type of object into the
SpaceObjectFactory. Similarly, if a user needs a Prince-Dormand 7(8) integrator, a call is made
to the PropagatorFactory for that type of integrator. The factory creates the object through a
call to the class's constructor, and returns the resulting object pointer.
The Factory subpackage is constructed this way to facilitate extensibility. Users can add user
generated classes by creating these classes and a Factory to instantiate them. That factory can
then be registered with GMAT's FactoryManager, and users will be able to access their specialized
classes in GMAT without modifying the con�gured GMAT code base. Eventually, users will be
able to load their objects through shared libraries (aka dlls in the Windows world) at run time.
The FactoryManager registration process takes a factory and asks it what type of objects it
can create, and sends the corresponding requests to the correct factory. Details of the factories
themselves can be found in Chapter 6. Extensibility is discussed in Chapter 28.

The Model The Engine package, described above, provides the programmatic framework necessary for
building and running a simulation in GMAT. The objects that are used to model the elements of the
simulation are contained in the Model package. All of the elements of the Model package are derived
from a common base class, GmatBase, described in Chapter 9.

Draft: Work in Progress
14 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

When a user con�gures GMAT to simulate a spacecraft mission, the user is con�guring objects in the
Model package. In other words, the Model package contains all of the components that are available to
a user when setting up a mission in GMAT. The model elements can be broken into four subpackages:

• Environment The environment subpackage provides all of the background environmental data used
in GMAT to model the solar system, along with the components needed to perform conversions
that require these elements.

• Resources All of the model elements that do not require some form of sequential ordering in
GMAT are called Resources. These are the model elements that appear in the Resource tree in
the GUI � excluding the Solar System elements � and they are the elements that are stored in
the con�guration subpackage, described above.

• Commands Commands are the elements of the model that describe how the model should evolve
over time. Since commands are sequential, they are stored separately, and in sequential order,
in the Command subpackage. The sequential set of commands in GMAT is called the Mission
Control Sequence.
The Mission Control Sequence is a list of commands. Commands that allow branching manage
their branches through �child� lists. These branch commands can be nested as deep as is required
to meet the needs of the model.

• Parameters Parameters are values or data containers (e.g. variables or arrays) that exist external
to other objects in the GMAT model. These objects are used to perform calculations of data
useful for analysis purposes.

Utilities The Utility package contains classes that are useful for implementing higher level GMAT functions.
These core classes provide basic array computations, core solar system independent calculations, and
other useful low level computations that facilitate programming in the GMAT system.

3.1.2 Package Component Interactions
The preceding section provides a static view into the components of GMAT. In this section, a high level view
of the interactions between the elements of these packages will be described. Figure 3.1 shows the static
package view of GMAT. Each top level package is color coded so that the system components shown in the
interaction diagram, Figure 3.3, can be identi�ed with their containing package. The legend on this �gure
identi�es the package color scheme.

Users interact with GMAT through either a Graphical User Interface (GUI) written using the cross-
platform GUI library wxWidgets, or through a console-based application designed to run scripts without
displaying graphical output. These interfaces communicate with the GMAT engine through interpreter
singletons4. The GUI application interacts with the engine through both the Script and GUI Interpreters,
while the console application interacts through the script interpreter exclusively. These interpreters are
designed to mediate two-way communications between the GMAT engine and users. The GUI and console
applications drive the GMAT engine through these interpreters.

The Interpreters in turn communicate with GMAT's Moderator singleton. The Moderator is the central
control object in the GMAT engine. It manages all program level communications and information �ow
while the program is running. It receives messages from the interpreters, processes those messages, and
instructs other components of the engine to take actions in response to the messages. The messages sent by
the interpreters fall into several distinct groups:

4The GMAT engine is run through a set of singleton class instances. The singleton design pattern used for these instances is
introduced in Appendix B. The important thing to know about singletons for this discussion is that there is only one instance
of any singleton class; hence a running GMAT executable has one and only one ScriptInterpreter, and Moderator, and at most
one GUIInterpreter. Other singletons will be introduced during this discussion as well, when the factories and con�guration
are discussed.

Draft: Work in Progress
3.1. THE GMAT SYSTEM FRAMEWORK 15

Figure 3.3: Subsystem Interactions in GMAT
Green arrows show information �ow between the core Engine components, while blue arrows show information
�ow that occurs when a mission is executed.

Draft: Work in Progress
16 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Figure 3.4: User Interactions

• Object Creation messages are used to request the creation of resources stored in the con�guration
database or the creation of commands stored in the Mission Control Sequence.

• Object Retrieval messages are used to access created objects, so they can be modi�ed by users or
stored to �le.

• Run messages prepare the Sandbox for a run of the Mission Control Sequence, and then launch
execution of the Mission Control Sequence.

• Pollingmessages are used to control an executing Mission Control Sequence, and are used to coordinate
external communications (for example, the startup process for MATLAB) and user actions taken during
the run.

The message and information �ow in the Engine are shown in Figure 3.3 with double headed arrows. The
green arrows show the central message and information �ow in the engine, while the blue arrows show
information �ow that occurs while a mission control sequence is executing. These messages are described
brie�y here, and more completely through examples later in this chapter.

The Moderator responds to requests for new resources or commands by requesting a new object from the
FactoryManager. The FactoryManager determines which Factory class can supply the requested object, and
sends a �create� request to that factory. The Factory builds the requested object, and sends the pointer to
the new object to the FactoryManager, which in turn sends the pointer to the Moderator. The Moderator
sends the new object's pointer to one of two locations, depending on the type of object created. If the object
is a Resource, the object pointer is passed to the Con�gurationManager. The Con�gurationManager adds
the resource to the database of con�gured objects. If the requested object is a command, it is added to the
Mission Control Sequence. The Moderator then returns the pointer to the interpreter that requested the
new object.

Object retrieval is used to retrieve the pointer to an object that was previously created. The Moderator
receives the message asking for the object. If the object is a con�gured resource, it calls the Con�guration-
Manager and asks for the resource by name. Otherwise, it traverses the Mission Control Sequence until it
�nds the requested command, and returns the pointer to that command.

Run messages are used to transfer the resources and Mission Control Sequence into the Sandbox and
start a run of the mission. When the Moderator is instructed to run a Mission Control Sequence, it starts by
loading the con�gured components into the Sandbox. The Moderator requests objects from the Con�gura-
tionManager, by type, and passes those objects to the Sandbox. The Sandbox receives the object pointers,
and clones each object into a local resource database. These local clones are the objects that interact with
the commands in the Mission Control Sequence to run a mission. The Moderator then passes the Mission
Control Sequence to the Sandbox so that the Sandbox has the list of commands that need to be executed
to run the mission. Next Moderator tells the Sandbox to initialize its components. The Sandbox initializes

Draft: Work in Progress
3.2. GMAT WORKFLOW OVERVIEW 17

each of the local components, and establishes any necessary connections between components in response to
this message. Finally, the Moderator instructs the Sandbox to execute the Mission Control Sequence. The
Sandbox starts with the �rst command in the sequence, and runs the commands, in order, until the last
command has executed or the run is terminated by either a user generated interrupt or an error encountered
during the run.

Polling messages are used to process messages between the Moderator and the Sandbox during a run.
Typical messages processed during polling are user requests to pause or terminate the run, or to open a
connection to an external process (including the startup of that process).

The descriptions provided here for these message types may be a bit confusing at �rst. The following
section provides representative cases of the message passing and object interactions in GMAT when a user
performs several common interactions.

3.2 GMAT Work�ow Overview
When users run GMAT, they follow a work �ow like that shown in Figure 3.4. Users start the program,
con�gure resources, plan their mission, save the con�guration, build the mission if working from a script
�le, and run the mission. The following sections describe the top level actions taken by GMAT when a user
initiates each of these actions.

3.2.1 The GMAT Startup Process

Figure 3.5: The Startup Process

The startup process for GMAT, shown in Figure 3.5, launches the executable program and prepares
the engine for use. Most of the work performed during startup is performed by the Moderator. When the

Draft: Work in Progress
18 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

application launches, the �rst action taken is the creation of the Moderator singleton, made by calling the
static Instance() method on the Moderator class. This freshly created Moderator is then initialized by the
application through a call to the Initialize method.

The procedure followed in Initialize() is shown in the large green structured �ow box in the �gure. The
Moderator reads the GMAT startup �le, setting linkages to the default �les needed to model and display
running missions. The startup �le resides in the same folder as the GMAT application, and contains path
and �le information for planetary ephemerides, potential models, graphical images used to provide texture
maps for bodies displayed in the GUI, atmospheric model �les, and default output paths for log �les and
other GMAT generated outputs.

Upon successful read of the startup �le, the Moderator starts creating and connecting the main compo-
nents of the engine. It begins by creating the components used for building model elements. The Facto-
ryManager and Con�gurationManager are created �rst. Next the Moderator creates each of the internally
con�gured factories, one at a time, and passes these instances into the FactoryManager. This process is
called �registering� the Factories in other parts of this document. Upon completion of Factory registration,
the Moderator creates instances of the ScriptInterpreter and GuiInterpreter singletons and the Publisher sin-
gleton. This completes the con�guration of the core engine elements, but does not complete the Moderator
initialization process, because GMAT starts with several default model elements.

The Moderator creates a default Solar System model, populated with a standard set of solar system
members. Next it creates three default coordinate systems that always exist in GMAT con�gurations:
the Earth-Centered Mean of J2000 Earth Equator system, the Earth-Centered Mean of J2000 Ecliptic
system, and the Earth-Centered Earth body-�xed system. Next the Moderator sets the pointers needed to
interconnect these default resources. Finally, the Moderator creates a default mission, and upon success,
returns control to the GMAT application.

The Application retrieves the pointer for the GuiInterpreter, and sets this pointer for later use in the GUI.
It then displays the GMAT splash screen, and then �nally creates and displays the main GMAT Window.
At this point, the GMAT GUI is con�gured and ready for use building models and running missions.

3.2.2 Con�guring Resources
Figure 3.6 shows the top level set of actions taken by a user when con�guring a typical resource � in this
case, a Spacecraft object � from the GUI. The user starts by using a right click on the Spacecraft folder
(or control-click on the Mac) in the resource tree on the left side of the main GMAT window. This action
opens a context menu; the user selects �Add Spacecraft� from this menu, and a new spacecraft resource
appears in the resource tree. This action is represented by the box labeled �Create the Spacecraft� in the
�gure. The user may also elect to change the name of the new Spacecraft. This action is taken with a right
click (control-click on the Mac) on the new resource in the resource tree, and selecting �Rename� from the
resulting context menu.

Once a resource has been created, the user can edit the properties of the resource. From the GUI, this
action is performed with a double click on the resource. The double click opens a new panel tailored to
the type of resource that is selected; for a Spacecraft, the panel shown in Figure 3.7 opens. The second
block in Figure 3.6, labeled �Set Spacecraft Properties�, represents the actions taken in GMAT when the
user performs this selection, and when the user makes changes on the resulting panel.

Changes made in a GUI panel like the one shown here are not automatically made on the underlying
objects in GMAT. Changes made on the panel are fed back to the internal objects when the user selects
either the �Ok� or �Apply� button on the bottom of the panel. This updating of the resource is represented
by the �Update Con�guration� block in Figure 3.6.

Each of these blocks can be further decomposed into the internal actions performed in GMAT when
the user makes the selections described here. The following paragraphs describe in some detail how GMAT
reacts to each of these user actions.

Draft: Work in Progress
3.2. GMAT WORKFLOW OVERVIEW 19

Figure 3.6: Con�guration Example: Spacecraft

3.2.2.1 Creating the Spacecraft

Figure 3.8 shows an example of the process followed in GMAT when a new resource is created from the
GUI. The user selected �Add Spacecraft� from the option menu on the Spacecraft node of the resource tree
(accessed with a right click � control-click on the Mac � on the node). This selection triggered the chain of
events shown in the sequence diagram in the �gure5. The sequence starts with a CreateObject() call from
the GUI to the interface into the GMAT engine. The interface between the GUI and the GMAT engine is a
singleton instance6 of the GuiInterpreter class, and is shown in green in the �gure.

The GuiInterpreter singleton receives the call to create an object of type Spacecraft. It makes a call,
in turn, into the singleton responsible for running the GMAT engine. This singleton is an instance of the
Moderator class7. The call into the Moderator is made in step 1 of the diagram; the call is made through
the CreateSpacecraft() method of the Moderator.

User con�gured objects in GMAT are always created through calls into a subsystem referred to collectively
as the Factory subsystem. Factories are responsible for creating these objects. The factory subsystem is
managed through a singleton class, the FactoryManager. The Moderator accesses the factories through
this singleton. In step 2 of the �gure, the Moderator makes a call to the CreateSpacecraft() method on
the FactoryManager. The FactoryManager �nds the Factory responsible for creating objects of the type
requested � in this case, a Spacecraft object � and calls that factory in turn. Spacecraft are created in GMAT's
SpaceObjectFactory, so the FactoryManager calls the CreateSpacecraft() method on the SpaceObjectFactory,
as is shown in step 3.

The SpaceObjectFactory creates an instance of the Spacecraft class by calling the class's constructor, as
5For an introduction to the UML diagram notation used throughout this document, see Appendix A
6Singletons, and other design patterns used in GMAT, are introduced on Appendix B.
7For the purposes of this discussion, the singleton instances will be referred to by their class name for the remainder of this

discussion.

Draft: Work in Progress
20 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Figure 3.7: The Spacecraft Con�guration Panel

shown in step 4. The constructed object is given a name, and then returned through the FactoryManager
to the Moderator. The Moderator receives the new object, and adds it to the database of con�gured objects
in GMAT.

All con�gured GMAT objects are managed by a singleton instance of the Con�gurationManager class.
The Con�gurationManager is used to store and retrieve objects during con�guration of the model. The
Moderator adds created components to the con�guration by calling Add() methods on the Con�guration-
Manager. For this example, the new Spacecraft is added to the con�guration through the call shown in step
5.

Once the steps described above have been completed successfully, the Moderator returns control to the
GuiInterpreter, which in turn informs the GUI that a new object, of type Spacecraft, has been con�gured.
The GUI adds this object to the resource tree, and returns to an idle state, awaiting new instructions from
the user.

3.2.2.2 Setting Spacecraft Properties

The Spacecraft that was created above has default settings for all of its properties. Users will typically reset
these properties to match the needs of their mission. The process followed for making these changes from
the GUI is shown in Figure 3.9.

As was discussed in the introduction to this section, Spacecraft properties are set on the GUI panel
shown in Figure 3.7. Users can open this panel at any point in the model setup process. Because of the free
�ow in the con�guration process, the Spacecraft pointer may not be accessible when the user elects to open
the con�guration panel with a double click on the Spacecraft's name on GMAT's resource tree. Therefore,
the �rst action taken when the panel is opened is a call from the panel to the GuiInterpreter to retrieve
the con�gured Spacecraft with the name as speci�ed on the Resource tree. The GuiInterpreter passes this
request to the Moderator. The Moderator, in turn, asks the Con�gurationManager for the object with the
speci�ed name. The Con�gurationManager returns that object to the Moderator, which passes it to the
GuiInterpreter. The GuiInterpreter returns the object (by pointer) to the Spacecraft Panel.

The Spacecraft Panel creates a temporary clone of the con�gured spacecraft so that it has an object

Draft: Work in Progress
3.2. GMAT WORKFLOW OVERVIEW 21

Figure 3.8: Con�guration Example: Creating the Spacecraft

that can be used for intermediate property manipulations8. This clone is set on the Spacecraft Panel's
subpanels, accessed through a tabbed interface shown in the snapshot of the panel. Each subpanel accesses
the properties corresponding to the �elds on the subpanel, and sets its data accordingly. The Spacecraft
Panel is then displayed to the user. The user then makes any changes wanted for the model that is being
con�gured.

3.2.2.3 Saving the Spacecraft

The �nal step in the spacecraft con�guration process is saving the updated data into the con�guration. That
process is shown in Figure 3.10.

The Spacecraft Panel has several tabbed subpanels. The SpacecraftPanel begins the save process by
calling each of these subpanels in turn, setting the corresponding Spacecraft data one subpanel at a time
on the locally cloned Spacecraft. Once all of the subpanels have synchronized their data with the clone, the
copy constructor of the con�gured Spacecraft is called with the cloned Spacecraft as the input argument.
This action updates the con�gured Spacecraft, completing the save action.

There are two buttons on the Spacecraft Panel that can be used to perform the save action. The button
labeled �Apply� saves the updated data to the con�gured object and leaves the Spacecraft Panel open for
further user manipulation. The �OK� button saves the data and closes the panel. The latter action destroys
the instance of the panel. Since the panel is going out of scope, the cloned Spacecraft must also be deleted,
as is shown in the �gure.

8The Spacecraft is unique in this respect; other objects con�gured in the GMAT GUI are manipulated directly, rather than
through a clone. The Spacecraft is in many respects a composite object; this added complexity makes the intermediate clone a
useful construct.

Draft: Work in Progress
22 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Figure 3.9: Con�guration Example: Setting Spacecraft Properties

3.2.3 Con�guring Commands
The previous paragraphs describe the interactions between core GMAT components and the internal message
passing that occurs when a component of a GMAT Model is con�gured for use. The following paragraphs
describe the analogous con�guration for the commands in the Mission Control Sequence.

The Mission Control Sequence is shown in the GMAT GUI on the tab labeled �Mission,� shown for
a modi�ed Hohmann transfer problem9 in Figure 3.11. The sequence is shown as a hierarchical tree of
commands. Each level of the hierarchy is a separate list of commands. The top level list is the main control
sequence. Commands that branch from this list are shown indented one level from this sequence. Commands
branching o� of these commands are indented an additional level10. This process continues until all of the
commands in the sequence are incorporated into the tree structure.

The Mission Control Sequence shown in the �gure consists of seventeen commands, grouped as seven
commands in the main (i.e. top level) sequence, �ve additional commands branched o� of this sequence to
perform one set of maneuver targeting, and an additional �ve commands to perform targeting for a second
maneuver. The main sequence of commands shown here is the sequence Propagate � Propagate � Target
� Propagate � Propagate � Target � Propagate. The Target commands are used to tune the maneuvers at

9The modi�cation made here is along the transfer trajectory from the initial orbit to the �nal orbit. The spacecraft in this
example is propagated through one and a half orbits on the transfer trajectory, rather than the typical half orbit needed for
the problem.

10In some cases sequences of similar commands are also indented to simplify the display of the Mission Control Sequence.

Draft: Work in Progress
3.2. GMAT WORKFLOW OVERVIEW 23

Figure 3.10: Con�guration Example: Saving the Spacecraft

each end of the transfer orbit by applying the command sequence Vary � Maneuver � Propagate � Achieve �
EndTarget. The inner workings of these commands is beyond the scope of this chapter; the important thing
to observe at this point is the sequencing of the commands, and the presentation of this sequencing to the
user by way of GMAT's GUI.

The tree shown in the GUI is populated by traversing the linked list of commands comprising the Mission
Control Sequence. Each node of the Mission Tree is an instance of the class MissionTreeItemData. This
class includes a pointer to the corresponding GmatCommand object in the Mission Control Sequence. When
GMAT needs to build or refresh the Mission Tree, it accesses the �rst node in the Mission Control Sequence
and creates a corresponding MissionTreeItemData instance. That instance is passed the pointer to the
GmatCommand, and uses that command pointer to con�gure its properties in the tree. GMAT then asks
for the next node in the sequence, and repeats this operation until the tree is fully populated.

Some GmatCommands are derived from a subclass named BranchCommand. These commands manage
child linked lists, like the ones shown for the target commands in the �gure. When the GUI encounters a
BranchCommand derivative, it indents the nodes displayed on the Mission Tree to indicate this nested level
for the child sequence of the branch command. All of the commands that allow this type of nesting are
terminated with a corresponding �End� command � for this example, the Target command terminates the
targeting child sequence when it encounters an EndTarget command.

Users interact with the Mission Control Sequence either through GMAT's scripting interface, or through

Draft: Work in Progress
24 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Figure 3.11: The Mission Tree in GMAT's GUI

manipulations made in the GUI. Manipulations made while scripting are pretty straightforward; they consist
of editing a script �le of commands and then instructing GMAT to parse this script. This process will be
described later. Figure 3.12 shows the steps a user takes when adding a command to the Mission Control
Sequence from the GUI.

Figure 3.12: Con�guration Example: A Mission Control Sequence Command

The Mission Control Sequence is a doubly linked list of objects that describes the sequence of actions that
GMAT will run when executing a mission. Each node in the linked list is an object derived from the command

Draft: Work in Progress
3.2. GMAT WORKFLOW OVERVIEW 25

base class, GmatCommand, as is described in Chapter 23. Since GmatCommand objects are doubly linked
in the list, each command has a pointer to its predecessor and to the next command in the list. When a
user decides to add a command to the Mission Control Sequence, a node in the Mission tree is selected and
right clicked (or control-clicked on the Macintosh). This action opens a context menu with �Insert Before�
and �Insert After� submenus as options. The �Before� and �After� selections here refer to the location of the
new command. The user selects the desired command type from the submenu, and the requested command
is added to the Mission Control Sequence in the speci�ed location. This set of actions corresponds to the
�rst block in the activity diagram, labeled �Create Command in Mission Control Sequence.�

Most of the commands in GMAT require additional settings to operate as the user intends � for example,
Propagate commands require the identity of the propagator and spacecraft that should be used during
propagation. The second block in the �gure, �Edit Command Properties,� is launched when the user double
clicks on a command. This action opens a command con�guration panel designed to help the user con�gure
the selected command. The user edits the command's properties, and then saves the updates back to the
command object by pressing either the �Apply� or �OK� button on the panel. This action is performed in
the �Save Updates� block in the �gure, and is the �nal step a user takes when con�guring a command.

Each of these high level actions can be broken into a sequence of steps performed between the core
elements of GMAT, as is described in the following paragraphs, which describe the interactions followed to
add a Maneuver command to the Mission Control Sequence.

3.2.3.1 Creating a Maneuver Command
Figure 3.13 shows the process followed when a Maneuver command is created and inserted following an
existing command from the GMAT GUI. The process starts when the user selects a command on the mission
tree, right clicks it, and chooses the �Insert After� option from the resulting context menu. The resulting
submenu contains a list of available commands; the following actions occur when the user selects �Maneuver�
from this list.

Draft: Work in Progress
26 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Fi
gu

re
3.
13

:C
om

m
an

d
Cr

ea
tio

n
Ex

am
pl
e:

Cr
ea
tin

g
a
M
an

eu
ve
rC

om
m
an

d

Draft: Work in Progress
3.2. GMAT WORKFLOW OVERVIEW 27

Maneuver command creation starts when the MissionTree11 object sends a request to the GuiInterpreter
for a new Maneuver command instance. The GuiInterpreter sends the request to the Moderator, which sends
the request to the FactoryManager. The FactoryManager �nds the factory that creates Maneuver commands,
and asks that factory for an instance of the Maneuver command. The resulting instance is returned from
the factory, through the FactoryManager, to the Moderator. The Moderator sets some default data on the
command, and then returns the command pointer to the GuiInterpreter. The GuiInterpreter passes the
command pointer to the MissionTree.

Each node in the MissionTree includes a data member pointing to the corresponding command in the
Mission Control Sequence. This structure simpli�es the interactions between the GUI and the engine when
a user makes changes to the Mission Control Sequence. Since the MissionTree already has a pointer to the
command preceding the new Maneuver command, it has all of the information needed to request that the new
command be added to the Mission Control Sequence. The new Maneuver command is added to the Mission
Control Sequence from the MissionTree. The MissionTree passes two pointers through the GuiInterpreter
to the Moderator: the �rst pointer identi�es the command selected as the command preceding the new one,
and second pointer is the address of the new Maneuver command. The Moderator passes these two pointers
to the head of the Mission Control Sequence using the �Insert� method. This method searches the linked
list recursively until it �nds the node identi�ed as the previous command node, and adds the new command
immediately after that node in the list, resetting the linked list pointers as needed. This completes the
process of adding a command to the Mission Control Sequence.

3.2.3.2 Con�guring and Saving the Maneuver Command

When a new command is added to the Mission Control Sequence, it is incorporated into the sequence with
default settings selected by the Moderator. Most of the time, the user will want to edit these settings to
match the requirements of the mission being modeled. Command con�guration is performed using custom
panels designed to display the properties users can set for each command. Figure 3.14 shows the panel that
opens when a user double clicks a maneuver command � like the one created in the example described above
� in the mission tree.

Figure 3.14: The Maneuver Command Con�guration Panel

The sequence diagram in Figure 3.15 shows the top level messages that are passed when the Maneuver
command is con�gured using this panel. This view into the command con�guration includes a bit more
detail about the GUI messages than was shown in the Spacecraft con�guration presented previously.

The con�guration process starts when the user double clicks on the command in the mission tree. The
double click action sends a message to the MissionTree requesting the con�guration panel for the selected
node in the tree. The MissionTree �nds the item data, and sends that data to the main GMAT window,

11Here, and throughout this document, speci�c instances of singleton classes are referred to by the class name � �MissionTree�
in this case. When the class or user experience of the instance is discussed, it will be referred to less formally � �mission tree�,
for example. So as an example of this style, we might discuss the user selecting an object on the mission tree in the GUI, which
causes the MissionTree to perform some action.

Draft: Work in Progress
28 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Figure 3.15: Command Con�guration Example: Con�guring the Maneuver Command

called the GmatMainFrame, asking for a new child window con�gured to edit the properties of the command
contained in the item data. The GmatMainFrame creates the child window and displays it for the user.

More concretely, if the user double clicks on the Maneuver command created in the preceding section,
the tree item data for that maneuver command is passed from the MissionTree to the GmatMainFrame.
The con�guration window that should result from this action for display in the GUI needs to contain the
panel designed to match the underlying object that is being con�gured � in this case, a Maneuver command.
The GmatMainFrame uses the tree item data passed to it to determine the type of panel needed by the
child window during its creation. For this example, the GmatMainFrame determines that the panel that is
needed should be a ManeuverPanel because the tree item data includes a pointer to a Maneuver command.
Accordingly, the GmatMainFrame creates an instance of the ManeuverPanel class, and passes that panel to
the child window. The child window receives the panel and places it into the corresponding container in the
window.

Finally, the child window uses the command pointer in the tree item data to access the command and
determine the current values of its internal properties. These data are collected from the command and
passed to the corresponding GUI components so that the user can see the current settings. Once these data
�elds have been populated, the child window is displayed on the GUI, giving the GUI a new window like
that shown in Figure �gure:ManeuverCon�gPanel. This completes the top portion of the sequence shown in
Figure 3.15.

Once the panel is shown on the GUI, the user makes changes to the settings for the command on the

Draft: Work in Progress
3.2. GMAT WORKFLOW OVERVIEW 29

new panel. When the settings match the needs of the mission, the user clicks on either the �OK� or �Apply�
button. This action makes the ManeuverPanel update the Maneuver command with the new settings. If the
user pressed the OK button, the child window also passes a message to GMAT indicating that the user is
�nished with the window. When that message is processed, the child window is closed in the GUI.

3.2.4 Model and Mission Persistence: Script Files
GMAT saves con�guration data in �les referred to as script �les. The details of the script �le parsing can
be found in Chapter 16. The following paragraphs provide an overview of these processes.

The GMAT script �les can be thought of as a serialized text view of the con�gured objects and Mission
Control Sequence constructed by the user to model spacecraft. GMAT provides a subsystem, controlled by
the ScriptInterpreter, that manages reading and writing of these �les. All of these script �les are ASCII
based �les, so they can be edited directly by users.

1 % ---
2 % Configure Resources
3 % ---
4 Create Spacecraft sat1
5 sat1.SMA = 10000.0
6 sat1.ECC = 0.25
7 sat1.INC = 78.5
8 sat1.RAAN = 45
9

10 Create ForceModel fm
11 fm.PrimaryBodies = {Earth}
12 fm.PointMasses = {Luna , Sun}
13

14 Create Propagator prop
15 prop.FM = fm
16

17 Create XYPlot posvel
18 posvel.IndVar = sat1.X
19 posvel.Add = sat1.VX
20 posvel.Add = sat1.VY
21 posvel.Add = sat1.VZ
22

23 % ---
24 % The Mission Control Sequence
25 % ---
26 While sat1.ElapsedDays < 7
27 Propagate prop(sat1)
28 EndWhile

Listing 3.1: A Basic GMAT Script File

Listing 3.1 shows a simple script that propagates a spacecraft for approximately 7 days, plotting the
Cartesian components of the velocity against the spacecraft's X coordinate value. Details of all of these
settings can be found in the User's Guide[UsersGuide]. This script just serves as an example for the discussion
that follows.

All objects that are created as con�gured resources from the GUI are stored in the script �les using
the keyword �Create�. In the script shown here, there are four resources: a Spacecraft named �sat1�, a
ForceModel named �fm�, a Propagator (actually an instance of the PropSetup class) named �prop�, and an
XYPlot Subscriber named �posvel�. Each of these resources is used when running the mission.

Draft: Work in Progress
30 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

In GMAT, each resource can have one or more data members that users can set. These resource properties
are initialized to default settings. Users can override the values of these properties. In the GUI, this action
is performed by editing data presented on the panels for the resources. Properties are changed in the script
�le by assigning new values to the properties by name; for example, in the sample script, the Spacecraft's
semimajor axis is changed to 10000.0 km on the �fth line of script:

sat1.SMA = 10000.0

The script shown here is a script as it might be entered by a user. Only the lines that override default
property values are shown, and the lines are written as simply as possible. The full set of object properties
can be examined by writing this object to a script �le. When a Spacecraft � or any other resource � is saved,
all of the resource properties are written. In addition, the keyword �GMAT� is written to the �le, and the
full precision data for the numerical properties are written as well. The Spacecraft con�gured in the script
�le above is written to �le as shown in Listing 3.2.

1 Create Spacecraft sat1;
2 GMAT sat1.DateFormat = TAIModJulian;
3 GMAT sat1.Epoch = 21545.000000000;
4 GMAT sat1.CoordinateSystem = EarthMJ2000Eq;
5 GMAT sat1.DisplayStateType = Keplerian;
6 GMAT sat1.SMA = 9999.999999999998;
7 GMAT sat1.ECC = 0.2499999999999999;
8 GMAT sat1.INC = 78.5;
9 GMAT sat1.RAAN = 45;

10 GMAT sat1.AOP = 7.349999999999972;
11 GMAT sat1.TA = 0.9999999999999002;
12 GMAT sat1.DryMass = 850;
13 GMAT sat1.Cd = 2.2;
14 GMAT sat1.Cr = 1.8;
15 GMAT sat1.DragArea = 15;
16 GMAT sat1.SRPArea = 1;

Listing 3.2: Script Listing for a Spacecraft

GMAT generates the scripting for resources and commands using a method, GetGeneratingString(), which
is provided in the GmatBase class. This class provides the infrastructure needed to read and write object
properties through a consistent set of interfaces. The GetGeneratingString() method uses these interfaces
when writing most user objects and commands to script. Derived classes can override the method as needed to
write out class speci�c information. When GMAT saves a model to a script �le, it tells the ScriptInterpreter
to write a script �le with a given name. The ScriptInterpreter systematically calls GetGeneratingString()
on each object in the con�guration and sends the resulting serialized form of each object to the script �le.
Once all of the objects in the con�guration have been saved, GMAT takes the �rst command in the Mission
Control Sequence and calls its GetGeneratingString() method, writing the resulting text to the script �le.
It traverses the command list, writing each command in sequential order.

Script reading inverts this process. When a user tells GMAT to read a script, the name of the script �le
is passed to the ScriptInterpreter. The ScriptInterpreter then reads the �le, one logical block12 at a time,
and constructs and con�gures the scripted objects following a procedure similar to that described above for
actions taken from the GUI.

Details of script processing can be found in Chapter 16.
12A �logical block� of script is one or more lines of text su�ciently detailed to describe a single action taken in GMAT.

Examples include creation of a resource, setting of a single parameter on a resource, or adding a command to the Mission
Control Sequence.

Draft: Work in Progress
3.2. GMAT WORKFLOW OVERVIEW 31

3.2.5 Running a Mission

Once a user has con�gured a model in GMAT, the model is ready to be run. The con�guration has been
populated with all of the resources needed for the run, and the resources have been con�gured to match the
needs of the analyst. The Mission Control Sequence has been entered and con�gured to meet the needs of
the mission. All that remains is the actual running of the model encoded in these elements.

Figure 3.16 shows the sequence followed when a mission is executed in GMAT. The �gure shows the
sequence as initiated in the GUI. The user chooses to run the mission by pressing the �Run� button on
GMAT's toolbar. This action sends a RunMission message to the GuiInterpreter, which then calls the
Moderator's RunMission() method (Step 1 in the �gure).

The Moderator begins by clearing any stale data out of the Sandbox by calling the Sandbox's Clear()
method (Step 2). This action removes any local copies of objects in the Sandbox that may still exist from a
previous run. Once the Sandbox has been cleared, the Moderator begins passing resources into the Sandbox.

The Moderator passes the current Solar System into the Sandbox, and then begins making calls to
Con�gurationManager to get the current set of resources used in the model (Step 3). The Moderator passes
these resources into the Sandbox (Step 4) by type, starting with coordinate systems, and proceeding until
all of the resources have been passed into the Sandbox. The Sandbox receives each resource as it is passed in
and makes a copy of that resource by calling its Clone() method (Steps 5 and 6). The Sandbox stores these
local clones by name in its local object map. The local object map contains the objects that are manipulated
during a run; the con�gured objects are not used when running the mission.

After the con�gured objects have been passed into the Sandbox, the Moderator sends the head node of
the Mission Control Sequence to the Sandbox13 (Step 7). This sets the Sandbox's internal sequence pointer
to the �rst command in the Mission Control Sequence (Step 8), completing steps needed to begin work in
the Sandbox.

The Moderator has completed the bulk of its work for the run at this point. The next action taken is
a call from the Moderator to the Sandbox, instructing it to initialize itself (Step 9). When the Sandbox
receives this instruction, it begins initializing the local objects. Each object is queried for a list of referenced
objects that need to be set, and the Sandbox �nds these objects in the local object store and sets each
one on the requesting object (Step 10, performed iteratively through all of the objects). After the object
initialization, the Sandbox walks through the Mission Control Sequence node by node, passing each command
a pointer to the local object map and then calling the Command's Initialize method, giving each command the
opportunity to set up data structures needed to execute the Mission Control Sequence (Step 11, performed
iteratively through the Mission Control Sequence). If initialization fails at any point during this process, the
Sandbox halts the initialization process and reports the error to the Moderator.

Once initialization is complete, the Sandbox reports successful initialization to the Moderator. At this
point the Moderator sends an Execute() message to the Sandbox (Step 12). The Sandbox responds by calling
the Execute() method on the �rst command in the Mission Control Sequence (Step 13). The command
executes this method, manipulating objects in the local object map (Step 14) and sending data to GMAT's
Publisher (Step 15) based on the design of each command. When data is passed to the Publisher, it passes
the data on to each Subscriber (Step 16), producing output that the user can view to monitor the mission
as it executes, or to process after the mission has �nished running.

When the �rst command completes execution, the Sandbox asks for the next node to execute in the
Mission Control Sequence, and repeats this process on the second node. The process continues, calling node
after node in the Mission Control Sequence until the �nal command has been executed.

13Commands are not cloned into the Sandbox at this writing. A future build of GMAT may require cloning of commands
as well as resources, so that the system can support multiple Sandboxes simultaneously. The system is designed to allow this
extensibility when needed.

Draft: Work in Progress
32 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Figure 3.16: The Sequence followed to Run a Mission

Draft: Work in Progress
3.3. SUMMARY 33

Figure 3.17: Results of the Script Example, Run on Linux

Once the �nal command has executed, the Sandbox sends a message to the Mission Control Sequence
stating that the run has completed execution, and control is returned to the Moderator from the Sandbox.
The Moderator returns control to the GuiInterpreter, which returns control, through the GUI, to the user,
completing the mission run. Figure 3.17 shows the results of this sequence when executed for the script
shown in Listing 3.1.

3.3 Summary
This completes the presentation of the overview of GMAT's architecture. In this chapter we have discussed
the basic architecture for GMAT, presented an overview of the arrangement of the components of the system
that we will build upon in upcoming chapters, and presented a programmatic description of the work�ow
of three common tasks performed in GMAT: Starting the system, Creating resources and comments for a
spacecraft mission, and running that mission.

The next few chapters will present, in some detail, descriptions of each of the components of the Engine
package, followed by sections describing the infrastructure used for the Resources and Commands, and then
the design features of these elements.

Draft: Work in Progress
34 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Draft: Work in Progress

Part II

Engine Components

35

Draft: Work in Progress

Draft: Work in Progress
Overview of Chapters 4 through 8
Mission modeling is performed in GMAT through the core numerical engine designed for the system. This
part of the architectural speci�cation describes the classes that make up the core engine components: the
Moderator, the Factory Manager, the Con�guration Manager, the Publisher, and Sandboxes. The purpose
of each of these components is summarized in Table 3.1.

Table 3.1: Key Elements of the GMAT Engine
Component Notes Description
Moderator Singleton Controls the program �ow in the Engine.
Factory Manager Singleton Responsible for the creation of objects and Mission Con-

trol Sequence commands used in the �ight dynamics
model.

Con�guration Manager Singleton Stores and retrieves user objects created by the Factory
Manager.

Publisher Singleton Passes data generated during a run to the Subscribers
that present these data to users.

Sandbox Multiple copies
allowed1

The component that manages initialization and execu-
tion of the Mission Control Sequence when a mission is
run.

Contents of the Chapters
Each component of the engine is described in a separate chapter, structured on the following outline:

Overview The introductory text for each chapter contains an overview of the component and its role in
the GMAT engine.

Design Principles This section describes the motivation behind the component, along with the principles
followed while designing it. It includes a description of patterns or other criteria used in the component
design, the roles and responsibilities handled by the component, and other design features that will
help you understand how the component �ts into the GMAT engine.

Design The design section presents the design for the component. It starts with the class diagram for the
component, followed by descriptions of representative methods and attributes of the class selected to
help you understand its implementation. It also provides an explanation of how the class satis�es the
roles and responsibilities identi�ed in the preceding section, through the use of activity and sequence
diagrams. Sometimes the details of these descriptions are better placed in other portions of the design
speci�cation; when that happens, a summary is provided in the chapter along with a reference to the
detailed description.

Usage and Modi�cation This section of the chapter provides additional tips about how to use or change
the component, and includes text describing best practices for working with it.

1While GMAT is designed to allow more than one Sandbox, the current implementation only uses a single Sandbox.

Draft: Work in Progress
38

Draft: Work in Progress

Chapter 4

The Moderator

The entry point into GMAT's engine is the Moderator. The Moderator controls program �ow, creating
components through the factory manager that are then managed in the con�guration manager, and then
using these components to model missions in a sandbox. The Moderator creates the engine components,
manages those components when necessary, and controls the processes in GMAT's engine. It initializes the
Sandbox prior to a run, and launches the run in the Sandbox. In other words, the Moderator is the central
control element of GMAT, acting as the interface between users and the internal elements of the system,
and facilitating communications between those internal elements.

The engine contains one component, the Publisher, that does not interact with the Moderator beyond
initialization. The Publisher, described in Chapter 8, is the communications interface between the Sandbox
objects and the Subscriber objects that present data to users. The following sections discuss interactions be-
tween engine components and the Moderator.With the exception of initialization, these interactions exclude
the Publisher.

This chapter explains how the Moderator accomplishes its tasks.

4.1 Moderator Design Principles
Figure 3.3 shows a high level view into GMAT's architecture. That �gure contains arrows showing all of the
allowed communications paths in the engine. Figure 4.1 shows the portion of that diagram that corresponds
to the Moderator's role in GMAT. The Moderator handles all communications between the Interpreters and
the engine, and between the components of the engine used to set up and run a mission.

While the arrows in this �gure show the information �ow through the Moderator, they do not state
explicitly what data or objects move along these paths. The Moderator is the manager for all of the tasks
accomplished in the engine.

The Moderator design is built around two design patterns: the Singleton pattern and the Mediator
pattern. The Mediator pattern is discussed in Section 4.1.2. The Moderator consolidates the management
actions needed for GMAT into a central location. It is a singleton to ensure that this consolidation happens
at only one place for the GMAT executable. Each instance of GMAT running in memory has exactly one
Moderator managing the GMAT engine.

There are seven key actions that the Moderator is responsible for managing, described in the next section.

4.1.1 Moderator Responsibilities
The Moderator plays a central role in seven tasks:

1. Engine Initialization: The Moderator is responsible for initializing GMAT's engine when the system
starts.

39

Draft: Work in Progress
40 CHAPTER 4. THE MODERATOR

Figure 4.1: Program Flow and the Moderator

2. Object Creation: All object creation requests made by users are passed, through an Interpreter,
to the Moderator. The Moderator starts this process by passing creation requests to the factory
subsystem, and completes it by sending the created objects to their destinations.

3. Object Con�guration: All object con�guration requests made by users are passed, through an
Interpreter, to the Moderator. The Moderator locates the object that needs con�guration, and passes
that object to the process that performs the con�guration.

4. Loading a Script: The Moderator works with the Script Interpreter to manage the creation and
con�guration process performed when a script �le is loaded into the system.

5. Running a Mission: The Moderator ensures that all of the elements needed to run a mission are
provided to the Sandbox used in the run, and then passes the initialization and run control into that
Sandbox. The Moderator then monitors the process in the background during the run, and handles
the communications necessary when a user interrupts the run.

6. Saving a Mission: The Moderator acts as an intermediary between the objects con�gured in GMAT
and the Interpreters when a mission is saved, locating and serving up the objects that need to be
serialized as needed by the Interpreters.

7. User Extension: The Moderator provides the interfaces needed to extend GMAT using user libraries.

Each of these tasks involves communications between components of the engine that, were the Moderator
absent, would be made directly between the engine components. While that approach may seem like a more
e�cient avenue at �rst, the resulting number and types of communications that it would necessitate would
produce a much more tightly coupled system. As the number of engine components increases, the complexity
of these component interactions would also increase. The Moderator reduces this communications complexity
by consolidating the communications into a central component, using a design pattern called the Mediator
pattern.

4.1.2 The Mediator Pattern Employed in the Moderator
The Moderator is designed to enforce loose coupling between the elements of GMAT's engine, and to simplify
and standardize the communications between the other elements of the engine. It acts as an intermediary

Draft: Work in Progress
4.1. MODERATOR DESIGN PRINCIPLES 41

between user inputs passed in through the script and GUI interpreters, the factory subsystem used to
build objects needed to simulate a mission, the con�guration that stores these con�gured objects, and the
sandboxes that actually run the simulation. It is built using the Mediator design pattern, as described in
[GoF] and summarized in Appendix B. This pattern enforces the following features:

Loose Coupling The engine components communicate with each other through calls into the Moder-
ator. This feature means that the other engine components do not need to know how to communicate with
each other. Instead, they make all communications calls to the Moderator, which is responsible for routing
these calls to the appropriate recipients. In other words, the Interpreters, Factory Manager, Con�guration
Manager, and Sandboxes do not know about each other. Instead, all of the interactions between these
components is made through calls to and from the Moderator.

Maintainability All communications between the Interpreters, Factory Manager, Con�guration Man-
ager, and Sandboxes is performed through the Moderator. This consolidation of the information exchange
between the components centralizes the location for communications mishaps, and simpli�es the task of
correcting these defects as they are detected. In addition, the interfaces in the Moderator are designed
to be consistent, reducing the number of di�erent calling protocols that a maintainer needs to learn and
understand.

4.1.2.1 Implications

The design of the Moderator as a Mediator produces the following bene�ts:

Decouples Objects Since the internal communications between the components of the engine pass
through the Moderator, the other elements of the engine do not need knowledge about each other.

Simpli�es Object Protocols The Moderator simpli�es objects by replacing direct communications
between the engine components with communications through a central component.

Abstracts Object Communications Since the Moderator stands separate from the actions taken by
the other engine components, work performed by the Moderator has the e�ect of reducing the interfaces in
the engine components to the minimal set necessary to achieve these communications. This feature simpli�es
those interfaces, and encourages better encapsulation of the workings of the other components.

Centralizes Complexity All of the complexity involved in the communications between the engine
components is captured in the Moderator. The interactions between the other engine components is greatly
simpli�ed through this design, making the engine easier to understand and maintain.

4.1.2.2 Summary

To summarize, the design of the Moderator reduces the interaction complexity in GMAT's engine; commu-
nications complexity resides in the Moderator, rather than in the interactions between the Interpreters and
the elements of the engine. The other objects involved in these communications � the Script and GUI In-
terpreters, the Factory Manager, the Con�guration Manager, and the Sandboxes � are less complex because
they only communicate with the Moderator, rather than with each other. The Moderator is constructed to
handle all of the interactions between the interpreters and amongst the engine components. You are unlikely
to need to make any changes to the Moderator unless you are adding an unanticipated feature.

Draft: Work in Progress
42 CHAPTER 4. THE MODERATOR

4.2 Moderator Design
Figure 4.2 shows the Moderator, the classes it interacts with, and some of its internal structures. The
interactions between the Moderator and other elements of GMAT's engine were presented in Chapter 3.
The sequence diagrams presented there describe the interfaces to the Moderator and their usage when
constructing and using a model. The methods shown in Figure 4.2 present representative examples of these
interfaces in more detail.

Figure 4.2: The Moderator in its Environment

4.2.1 Class Details
The following paragraphs describe the internal data members used by the Moderator and a brief discussion
of how the methods shown in the �gure are used to accomplish its tasks. Full details of the Moderator
and its members can be found in the Doxygen documentation, generated by running Doxygen[doxygen] on
GMAT's source code.

4.2.1.1 Class Attributes
There are several key data members that the Moderator uses to perform its assigned tasks. These members
are

• Moderator *instance: The instance pointer in the Moderator is the singleton instance used
throughout GMAT.

Draft: Work in Progress
4.2. MODERATOR DESIGN 43

• std::vector<Sandbox*> sandboxes: GMAT's Sandbox class is used to run missions simulating
spacecraft in orbit. The Sandbox instances are the only key players in the engine which do not exist
as singletons. Instead, the Sandbox instances are managed by the Moderator using the sandboxes
vector.

• std::vector<GmatCommand*> commands: GMAT maintains a 1:1 mapping between the Sand-
box instances and the Mission Control Sequences assigned to each Sandbox. The Moderator uses its
commands vector to manage the �rst node of the command sequence linked list for the Mission Control
Sequence of each Sandbox.

• SolarSystem* theSolarSystemInUse: GMAT's Solar System model (see Chapter 11) is an aggre-
gated object con�gured to include all of the bodies, special points, and other environmental elements
necessary for precision spacecraft modeling. The Moderator manages the Solar System used in the
Sandboxes, and stores the current Solar System in the theSolarSystemInUse data member.

• std::string theCurrentPlanetarySource: This string identi�es the source of the planetary ephemerides
used in GMAT's environmental model.

• RunState runState: The Moderator keeps track of the current state of the Sandbox instances in
order to facilitate communications about that status between the interpreters and user interfaces,
the Publisher, and the Sandbox instances1. The runState member tracks this information for the
Moderator.

Each of these class attributes plays a role in the seven tasks managed by the Moderator. Figure 4.2 also
shows several methods used for these tasks. These methods and their roles in the Moderator's tasks are
described next.

4.2.1.2 Initialization and Finalization Methods
The Moderator is responsible for starting the internal components of GMAT's engine, and for ensuring that
those components exit gracefully when GMAT is closed. The start up process is described in some detail in
section 3.2.1. Initialization and �nalization are performed through the following two methods:

• bool Initialize(bool isFromGui = false): The Initialize method creates the core engine compo-
nents, parses the start up �le and sets up the external �le pointers for references contained in that �le,
and populates the Factory manager with the default factories. This method should be called before
performing any other interactions with the GMAT engine. The input parameter, isFromGui, is used
to determine if the default mission should be constructed during initialization.

• void Finalize(): The Finalize method is called as GMAT shuts down. This method frees memory
that was allocated for use by the Moderator, and closes any open �les managed in the Moderator.

4.2.1.3 Creation and Con�guration Methods
The creation process, described in Section 3.2.2.1 for con�gured objects and in Section 3.2.3.1 for commands,
allocates objects and stores them in GMAT's con�guration database or the Mission Control Sequence,
respectively. These objects can then be accessed by GMAT so that their attributes can be set as needed for
the simulation, and, for the objects in the con�guration database, so that they can be copied into a Sandbox
prior to a mission run. The Moderator acts as the intermediary for the creation and object access processes,
using methods tailored to these actions.

The full set of creation and access methods are best viewed in the Doxygen �les. The following method
descriptions are representative of the full set found there. The methods listed here use the Burn classes to

1The current implementation uses a single runState data member. This data structure will change to a vector when the
multiple Sandbox features of GMAT are enabled.

Draft: Work in Progress
44 CHAPTER 4. THE MODERATOR

illustrate the objects that can be created in GMAT; other types of objects are created and con�gured using
similar methods.

• StringArray GetListOfFactoryItems(Gmat::ObjectType type): This method returns a list
of all of the creatable types of objects of a given supertype, described by the type parameter. For
example, if the type parameter is set to the BURN type, the returned string array contains the entries
�ImpulsiveBurn� and �FiniteBurn�.

• Burn* CreateBurn(const std::string &type, const std::string &name): Creates a Burn object
of the speci�ed subtype, with the speci�ed name. The Moderator contains creation methods for all of
GMAT's core types. These methods are all similar in form to the method shown here; they specify the
subtype and name of the requested object, and then return a pointer to the object if it was created
successfully.

• Burn* GetBurn(const std::string &name): Retrieves the Burn object with the speci�ed name.
Similar methods exist for all of GMAT's core types.

• GmatBase* GetCon�guredObject(const std::string &name): Returns a base class pointer to
the con�gured object of the speci�ed name.

• GmatCommand* CreateCommand(const std::string &type, const std::string &name, bool
&retFlag): Creates a Mission Control Sequence command of the speci�ed type.

• GmatCommand* AppendCommand(const std::string &type, const std::string &name,
bool &retFlag, Integer sandboxNum = 1): Creates a Mission Control Sequence command of
the speci�ed type, and passes it into the Mission Control Sequence associated with the speci�ed Sand-
box.

• GmatCommand* GetFirstCommand(Integer sandboxNum = 1): Retrieves the �rst command
in the Mission Control Sequence associated with the speci�ed Sandbox. Since the Mission Control
Sequence is a linked list, this method can be used to retrieve the entire Mission Control Sequence.

4.2.1.4 Reading or Saving a Mission
The processes followed when loading a mission into GMAT and when saving a mission from GMAT are
managed by the Script Interpreter.

The read process is implemented as a sequence of object creations and con�gurations in the Script
Interpreter. The Moderator passes requests for these processes to the Interpreter through several di�erent
methods, including these:

• bool LoadDefaultMission(): Clears the current con�guration and Mission Control Sequence from
memory, and then creates and con�gures the default GMAT mission.

• bool InterpretScript(const std::string &�lename, bool readBack = false, const std::string
&newPath = ""): Creates and con�gures all of the objects in a script �le.

Each object de�ning a mission in GMAT includes the ability to serialize itself so that is can be passed
to an external process or written to a �le. The Moderator passes requests for this serialization to the Script
Interpreter for processing. A representative example of the Moderator methods used for this process is the
SaveScript method:

• bool SaveScript(const std::string &�lename, Gmat::WriteMode mode = Gmat::SCRIPTING):
Builds scripts from the con�gured objects and commands, and write them to a �le named by the
filename parameter. The writeMode parameter is used to determine the style of the serialization;
it can be set to either the default SCRIPTING style or to a style, MATLAB_STRUCT, compatible with
MATLAB.

Details of the actual processes followed when reading or writing a script can be found in Chapter 16.

Draft: Work in Progress
4.2. MODERATOR DESIGN 45

4.2.1.5 Methods Used to Run a Mission

The process followed when GMAT runs a mission is described in Section 3.2.5. The process is relatively
straightforward: the con�gured objects and Mission Control Sequence are loaded into the Sandbox instance,
initialized to establish the connections between those objects, and then run in the Sandbox, as described
in Section 3.2.5 and in Chapter 5. The Moderator supports these tasks through the following methods and
through similar methods that can be examined in the Doxygen output.

• Integer RunMission(Integer sandboxNum = 1): Loads objects into the speci�ed Sandbox,
initializes it, and starts the mission run in the Sandbox.

• Integer ChangeRunState(const std::string &state, Integer sandboxNum = 1): Method used
by the interpreters to update the run state information in the Moderator, so that the Sandbox can
later check the Moderator's run state.

• RunState GetUserInterrupt(): Method called to determine if the user has requested a change in
the run state. This method queries the interpreter for state changes before returning the run state, so
that the interpreter code has an opportunity to update the state based on user actions.

• RunState GetRunState(): Returns the current run state of the Sandbox.

The Moderator keeps track of the state of execution in the Sandbox instance so that it can respond to
messages from the interpreters that a�ect the system, like user commands to pause or terminate the run.
The discussion in Section 3.2.5 presented the program �ow exercised during a mission run. During the
loop through the Mission Control Sequence shown in Figure 3.16, the Sandbox polls the Moderator for the
execution state. This polling checks the Moderator's state variable and responds accordingly, as discussed
in Chapter 5.

Figure 4.3: State Transitions in the Moderator

Draft: Work in Progress
46 CHAPTER 4. THE MODERATOR

State Transitions in the Moderator The Moderator tracks the current state of the system using a
parameter named runState, which is set to a value in the RunState enumeration (see Table 9.8) de�ned in
the Gmat namespace. The engine states tracked in the Moderator are the IDLE, RUNNING, and PAUSED
states.

Figure 4.3 shows the run state transitions tracked by the Moderator. The Moderator is created with
the run state set to the IDLE state. Most of the time, the Moderator remains in the IDLE state, processing
messages from users and managing the internal components of the GMAT engine2.

When a user executes a Mission Control Sequence, the Moderator transitions to the RUNNING state. In
this state, the Moderator performs very limited processing while the control of the system is managed by the
sandbox that is running the mission. The sandbox polls the Moderator for user activity at convenient points
during the mission run. This polling allows the Moderator to respond to user actions that either terminate
the mission early or pause the mission.

If the user presses the pause button on the GUI, the Moderator transitions into the PAUSED state when
the sandbox polls for state status. This activity stops the mission run, but maintains data so that the run
can be resumed from the point of the stop. The user tells the Moderator to resume the run by pressing
the run button on the GUI. When the Moderator receives the run message, it transitions back into the
RUNNING state and tells the sandbox to resume the run.

The user can terminate a run early by pressing the stop button on the GUI during a run. This action
always causes the Moderator to transition from its current state - either RUNNING or PAUSED � into the
IDLE state.

4.2.1.6 Support for Extending GMAT
GMAT employs a design pattern that allows the objects and commands used in simulations to be treated
generically in the engine code. The system can be extended by creating a class or collection of classes, derived
from one of GMAT's base classes, for each new feature that is added to the system, and then creating a
Factory class that constructs instances of these new classes. This Factory is registered with GMAT's Factory
Manager through the following call in the Moderator:

• bool RegisterFactory(Factory* newFactory): Adds a Factory to the object creation subsystem
managed by the Factory Manager.

Further details of the Factory subsystem can be found in Chapter 6.

4.3 Usage and Modi�cation
The Moderator runs in the background for most of GMAT's programmatic tasks. You'll need to interact
with it directly if you are working with the Factory Manager, Con�guration Manager, or Sandbox code, or
if you are adding a new interface to GMAT that requires a new Interpreter. Most programmatic tasks are
not that extensive, and can be performed without changing the Moderator.

If you are adding a new user class to GMAT, you'll need to register the factory that creates instances
of that class. These extensions are made through a call to the Moderator's RegisterFactory method, as
described in Chapter 28. In addition, if the new class is not derived from a base class matching the set of
Create and Get functions in the Moderator, you may need to add these methods to the Moderator code3.

By design, the Moderator was written to support operations in GMAT's engine as it stands without the
need for further extension. If you �nd a case that seems to need new functionality in the Moderator, please
start a discussion regarding the change on GMAT's message forums at SourceForge4.

2Many of the activities performed by the Moderator in the IDLE state are described in Chapter 3. Additional Moderator
interactions with the other engine components are described in the appropriate sections of this document.

3The GMAT development team has this item noted as an issue that needs to be resolved.
4http://sourceforge.net/projects/gmat

Draft: Work in Progress

Chapter 5

The Sandbox

5.1 Design Principles
5.1.1 Sandbox Responsibilities

1. Clones con�gured objects for use during a run.

2. Connects local objects and commands together during initialization.

3. Runs the Mission Control Sequence.

4. Responds to interrupts from teh Moderator.

5. Passes output data to the Publisher.

6. Coordinates mission-run communications with outside processes.

7. Resets itself for new runs.

5.2 Design
5.2.1 Class Details
5.2.1.1 Class Attributes

5.2.2 The Late Binding Strategy
5.2.2.1 Sandbox Initialization Details
Figure 5.1 shows the steps taken to initialize a control sequence � either the Mission Control Sequence or a
Function Control Sequence.

5.2.3 Interrupt Polling During a Run

5.3 Usage and Modi�cation

47

Draft: Work in Progress
48 CHAPTER 5. THE SANDBOX

Figure 5.1: Initialization of a Control Sequence in the Sandbox

Draft: Work in Progress

Chapter 6

The Factory Manager

The Factory Manager uses Factory classes to create objects for GMAT's model. It takes creation messages
from the Moderator, passes those messages into the Factory designed to create the speci�c type of object
requested, and returns the created object to the Moderator.

This chapter describes the Factory Manager and introduces the Factory classes. The Factory Manager
acts as the central junction into the Factory subsystem, managing Factories as they are created an d reg-
istered, and routint creation requests to the speci�c Factory that knows how to create a requested type of
object.

Object creation is performed in a Factory derived from the Factory base class. An overview of the Factory
infrastructure is provided in Section 6.2.2. Details about how you use the Factory classes to extend GMAT
can be found in Chapter 28.

6.1 Design Principles
6.1.1 Factory Manager Responsibilities

1. Manages object creation for the engine.

2. Calls Factory classes to create objects.

3. Registers new Factories to support newly de�ned objects.

4. Provides a list of creatable object types.

6.1.2 The Abstract Factory Pattern, Factory Subclasses, and the Factory Man-
ager

6.2 Design
6.2.1 Class Details
6.2.1.1 Class Attributes

6.2.2 Design of the Factory Classes
6.2.2.1 Factory Details

6.3 Usage and Modi�cation

49

Draft: Work in Progress
50 CHAPTER 6. THE FACTORY MANAGER

Figure 6.1: The Factory Manager and Some Factories

Draft: Work in Progress

Chapter 7

The Con�guration Manager

User created objects are stored in a vector of object pointers called the con�guration. The Con�guration
Manager maintains this vector, provides access to the members, and adds new objects to teh vector as they
are created. This chapter describes how the Con�guration Manager performs these tasks.

7.1 Design Principles
The Con�guration Manager Does not initiate communications with any other components of GMAT. It
responds to requests from the Moderator to store or retrieve components of the GMAT model.

7.1.1 Con�guration Manager Responsibilities
The Con�guration Manager plays a central role in object storage and retrieval for the model elements. It
performs the following tasks:

1. Maintain the collection of con�gured objects used in the model.

2. Add new objects to the collection when they are created, ensuring that the new objects have unique
names.

3. Retrieve objects as they are needed.

4. Retrieve the list of stored objects, either by type or generically.

5. Clear the con�guration in preparation for a new mission.

7.2 Design
7.2.1 Class Details
7.2.1.1 Class Attributes

7.3 Usage and Modi�cation

51

Draft: Work in Progress
52 CHAPTER 7. THE CONFIGURATION MANAGER

Draft: Work in Progress

Chapter 8

The Publisher

8.1 Design Principles
8.1.1 Publisher Responsibilities

1. Registers data Subscribers that receive data during a mission run.

2. Receives published data during a run and passes it to Subscribers.

3. Flushes data streams when needed.

4. Passes messages indicating state changes and other run information to the Subscribers.

5. Manages the subscriber list, adding or removing Subscribers as needed.

8.2 Design
8.2.1 Class Details
8.2.1.1 Class Attributes

8.3 Usage and Modi�cation

53

Draft: Work in Progress
54 CHAPTER 8. THE PUBLISHER

Draft: Work in Progress

Part III

Model Components

55

Draft: Work in Progress

Draft: Work in Progress

Chapter 9

The GmatBase Class, Constants, and
De�ned Types

Darrel J. Conway
Thinking Systems, Inc.

This chapter documents GMAT's prede�ned data types, constants, and the core user classes used in
GMAT to implement the �ight dynamics model.

9.1 De�ned Data Types
GMAT uses the C++ type de�nition mechanism to de�ne the data types shown in Table 9.1. These
de�nitions, found in the gmatdefs.hpp header �le, provide a mechanism to generalize common data types
and frequently used structures in the source code.

Table 9.1: Data Types De�ned for GMAT
De�ned typedef Type Name Description
double Real 8 byte �oat
int Integer 4 byte signed integer
unsigned char Byte 1 byte character
unsigned int UnsignedInt 4 byte unsigned integer
std::vector<Real> RealArray Vector of Reals
std::vector<Integer> IntegerArray Vector of signed integers
std::vector<UnsignedInt> UnsignedIntArray Vector of unsigned integers
std::vector<std::string> StringArray Vector of strings
std::vector<GmatBase*> ObjectArray Vector of GmatBase objects
std::vector<Gmat::ObjectType> ObjectTypeArray Vector of object type identi�ers

9.2 Error Handling in GMAT
GMAT responds to critical anomalies in the con�guration or other settings by throwing exceptions reporting
the error. Every e�ort has been made to make GMAT's exception messages consistent and informative. Less

57

Draft: Work in Progress
58 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

serious anomalies may be reported through masseges passed as warnings to GMAT's messaging system. The
classes implemented to support these two mechanisms are documented in Chapter 10.

9.3 GmatBase
The factory classes described in Chapter 6 are used to generate the resources and Mission Control Sequence
commands needed to simulate �ight dynamics models. The objects that are generated in GMAT correspond-
ing to these model elements are all instances of classes derived from a base class named GmatBase. The
GmatBase class de�nes a common set of interfaces used to build, con�gure, maintain, and store these ele-
ments. This commonality of the interfaces into user de�ned objects enforces consistency, simplifying common
tasks that are performed on these objects.

Since understanding of the GmatBase is key to understanding how to work with the source code for the
model, this section of the document is written to thoroughly capture the contents of the class. We'll begin by
examining the class features in the following sections, and then provide some information about how GMAT
uses these features to set properties while reading and to serialize model objects while writing objects to a
text stream.

9.3.1 GmatBase Attributes and Methods
The features of GmatBase are broken into the class attributes and methods. The method descriptions are
categorized into ??? subsections: (1) Constructors, Destructor, and Static Methods, (2) Object Management
Interfaces, (3) Interfaces Used for Scripting, the GUI, and External Communications, (4) Class Attributes
for Referenced and Owned Objects, (5) Class Attribute Management interfaces, and (6 � 9) sections for the
interfaces into Reals, Integers, Strings, and other attribute types.

9.3.1.1 Class Attributes
GmatBase contains data structures designed to manage the common elements shared by all of the derived
classes. Con�gurable pieces of the derived classes are referred to as �parameters� in the GmatBase code;
hence the Integer attribute �parameterCount� reports the number of parameters that can be accessed for
instances of the derived class. The attributes of GmatGase are described here:

• static Integer instanceCount: Count of the number of GmatBase objects currently instantiated.

• Integer parameterCount: Count of the accessible parameters.

• std::string typeName: Script string used or this class.

• std::string instanceName: Name of the object � empty if it is nameless.

• Gmat::ObjectType type: Enumerated base type of the object.

• Integer ownedObjectCount: Number of owned objects that belong to this instance.

• std::string generatingString: Script string used to build the object.

• ObjectTypeArray objectTypes: The list of generic types that this class extends.

• StringArray objectTypeNames: The list types that this class extends, by name.

• ObjectTypeArray refObjectTypes: The list of object types referenced by this class.

• StringArray refObjectNames: The list of object names referenced by this class.

• bool callbackExecuting: Flag indicating whether or not a Callback method is currently executing.

Draft: Work in Progress
9.3. GMATBASE 59

• std::string errorMessageFormat: The format string used when throwing error messages for named
objects.

• std::string errorMessageFormatUnnamed: The format string used when throwing error messages
for unnamed objects.

• bool inMatlabMode: Flag used to deterine if the current write is in Matlab mode.

• std::string commentLine: String used to hold the comment line.

• std::string inlineComment: String used to hold inline comment.

• StringArray attributeCommentLines: String array used to hold the attribute comments.

• StringArray attributeInlineComments: String array used to hold the attribute inline comments.

9.3.1.2 Constructor, Destructor, and Static Methods
GmatBase implements methods that override the default compiler-generated construction and destruction
capabilities, along with several class level utilities, as described below.

Default Methods C++ automatically de�nes four methods when a class is de�ned in code: a default
constructor, a copy constructor, a destructor, and an assignment operator. Every user class in GMAT
overrides these methods to prevent generation of the default compiler versions.

• GmatBase(Gmat::ObjectType typeId, const std::string &typeStr, const std::string &nomme
= ""): This is the default constructor for all GmatBase objects.

• virtual GmatBase() = 0: The base class destructor. The destructor is set as abstract, but it does
have an implementation; designating it as abstract ensures that the compiler will not allow GmatBase
base class instances.

• GmatBase(const GmatBase &a): The copy constructor.

• GmatBase& operator=(const GmatBase &a): The assignment operator.

Static Methods The GmatBase class provides a mechanism to count object instances, provide numerical
precision setting data, and �nd object types and names through the following static class methods:

• static Integer GetInstanceCount(): Method to return the current number of instantiated objects.

• static Integer GetDataPrecision(): Returns the current precision setting used when converting
Real numbers into strings.

• static Integer GetTimePrecision(): Returns the current precision setting used when converting
epoch data into strings.

• static std::string GetObjectTypeString(Gmat::ObjectType type): Method for getting GMAT
object type string.

• static Gmat::ObjectType GetObjectType(const std::string &typeString): Method for get-
ting GMAT object type.

9.3.1.3 Object Management Interfaces
GmatBase provides interfaces that are used to identify the object so that it can be accessed, and so that
other objects can �nd and connect to it. These interfaces are described in this section.

Draft: Work in Progress
60 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

Base Class Property Interfaces We'll begin by listing the interfaces that are used to retrieve information
about the current object.

• virtual Gmat::ObjectType GetType() const: Retrieves the core type of the object.

• inline std::string GetTypeName() const: Retrieves the test description used for the object type.

• inline std::string GetName() const: Retrieves teh object's name. Names in GMAT are used to
access objects in the Con�guration; each user de�ned object that is stored in the con�guration is given
a unique name.

• virtual bool SetName(const std::string &who, const std::string &oldName = ""): Renames
the object.

• virtual Integer GetParameterCount() const: Returns the number of parameters that can be
accessed for the object using the parameter interfaces, discussed below.

• bool IsOfType(Gmat::ObjectType ofType): Checks the object to see if it is derived from the
speci�ed ObjectType.

• bool IsOfType(std::string typeDescription): Checks the object to see if it is derived from the
speci�ed named type.

Overridable Interfaces The interfaces listed next are interfaces that are overrridden in the derived classes
to provide functionality as needed.

• virtual GmatBase* Clone() const = 0: Every GmatBase derived class that can be instantiated
must implement the Clone() method. Clone() is used to copy objects from the con�guration into the
Sandbox prior to the execution of the Mission Control Sequence.

• virtual void Copy(const GmatBase*): The Copy() method is provided so that objects that need to
copy data from other objects of the same class type can do so even when referenced through GmatBase
pointers.

• virtual bool Initialize(): Objects that need to preform speci�c initialization tasks override this
method to perform those tasks. The Sandbox calls the Initialize() method as part of the Sandbox
initialization process.

• virtual void SetSolarSystem(SolarSystem *ss): Objects that need access to GMAT's current
SolarSystem object override this method to set their SolarSystem pointer.

• virtual bool RequiresJ2000Body(): Classes that need location data in the model use a referenced
body � referred to as the J2000 body � as the origin for spatial conversions. Classes that require this
body override the RequiresJ2000Body method to return true from this call.

• virtual bool TakeAction(const std::string &action, const std::string &actionData = ""):
TakeAction() is a utility method that derived classes override to provide functionality that cannot be
implemented through basic parameter setting calls1.

• virtual void FinalizeCreation(): Performs initialization of GmatBase properties that depend on
the features of the derived classes. Derived classes can touch some of the base class properties � the
parameterCount, for example. This method is called after the object creation process is complete, so
that any of the object's base-class properties can be updated to re�ect the object's actual properties.

1One example of the use of the TakeAction() can be found in the Spacecraft class. The Spacecraft class uses TakeAction() to
manage attached tank and thruster objects. Tanks and Thrusters are attached by name to the Spacecraft instances during con-
�guration, but the actual member objects are set during Sandbox initialization through a call, �TakeAction("SetupHardware");�,
made to the Spacecraft object.

Draft: Work in Progress
9.3. GMATBASE 61

• virtual std::string GetErrorMessageFormat(): Returns the error message format string used by
the object.

• virtual void SetErrorMessageFormat(const std::string &fmt): Updates the error message for-
mat string used by the object.

9.3.1.4 Interfaces Used for Scripting, the GUI, and External Communications
The interfaces used for scripting and callbacks are described in the following paragraphs.

General Purpose Interfaces All of the objects used in GMAT's model have the ability to produce text
descriptions � aka script blocks � su�cient to reproduce themselves and to incorporate text comments that
help document the intent of the setting selected by the user. These interfaces are described here:

• virtual const std::string GetCommentLine() const: Returns the comment lines that occur before
the object de�nition or command line.

• virtual void SetCommentLine(const std::string &comment): Sets the comment lines that occur
before the object de�nition or command line.

• virtual const std::string GetInlineComment() const: Returns the comment that occurs inline
at the end of the object de�nition or command line.

• virtual void SetInlineComment(const std::string &comment): Sets the comment that occurs
inline at the end of the object de�nition or command line.

• virtual const std::string GetAttributeCommentLine(Integer index): Returns any comment
that occurs before an attribute setting line.

• virtual void SetAttributeCommentLine(Integer index, const std::string &comment): Sets
a comment that occurs before the attribute setting line.

• virtual const std::string GetInlineAttributeComment(Integer index): Returns the comment
that occurs at the end of an attribute setting line.

• virtual void SetInlineAttributeComment(Integer index, const std::string &comment): Sets
the comment that occurs at the end of an attribute setting line.

• virtual const std::string& GetGeneratingString(Gmat::WriteMode mode = Gmat::SCRIPTING,
const std::string &pre�x = "", const std::string &useName = ""): Returns a text string that
can be used to regenerate the object. See Section 9.3.3.1 for an explanation of the write modes.

• virtual StringArray GetGeneratingStringArray(Gmat::WriteMode mode = Gmat::SCRIPTING,
const std::string &pre�x = "", const std::string &useName = ""): Returns a string array
that can be used to regenerate the object. See Section 9.3.3.1 for an explanation of the write modes.

• void CopyParameters(const GmatBase &a): Copies the attributes from one object into the
current object.

• virtual voidWriteParameters(Gmat::WriteMode mode, std::string &pre�x, std::stringstream
&stream): Writes the parameter details for an object. This method is called by the GetGenerat-
ingString methods to build the individual attribute lines needed to write con�gured objects.

• void WriteParameterValue(Integer id, std::stringstream &stream): Formats and writes the
attribute value portion of the attribute line.

• virtual void PrepCommentTables(): A private method used to con�gure teh comment tables so
that they are sized correctly for the owning object.

Draft: Work in Progress
62 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

Callback Interfaces Some GMAT classes are designed to communicate with external process through a
basic callback method. These classes override the following methods to implement callbacks.

• virtual bool ExecuteCallback(): The method called from the external process to execute a task in
GMAT.

• virtual bool IsCallbackExecuting(): Monitoring function used to determine if the object is exe-
cuting its callback method.

• virtual bool PutCallbackData(std::string &data): Sends data from GMAT to the process that
is using the callback.

• virtual std::string GetCallbackResults(): Retrieves the results of the callback.

9.3.1.5 Class Attributes: Referenced and Owned Objects
Many of the user created objects need to interact with other model objects to correctly model the spacecraft
mission. When an object uses the interfaces for a second named object that is stored in the con�guration, the
second object is called a �referenced object� in this document. Occasionally an object will have, as a wholly
owned, encapsulated member, another object. These internal member objects are called �owned objects.�
The methods listed here are implemented to work with the owned and referenced objects.

• virtual std::string GetRefObjectName(const Gmat::ObjectType type) const: Returns the
name of a referenced object of a speci�ed type, of the object uses that type of referenced object.

• virtual const ObjectTypeArray& GetRefObjectTypeArray(): Returns an array of the refer-
ence object types used by the current object. Derived classes set the types in the refObjectTypes
attribute, which is returned from this call.

• virtual const StringArray& GetRefObjectNameArray(const Gmat::ObjectType type): Re-
turns the reference object names used by the current object. Derived classes override this method to
return the correct values.

• virtual bool SetRefObjectName(const Gmat::ObjectType type, const std::string &name):
Sets the name of a referenced object.

• virtual bool RenameRefObject(const Gmat::ObjectType type, const std::string &old-
Name, const std::string &newName): Resets the reference object name when the reference object
is renamed elsewhere.

• virtual GmatBase* GetRefObject(const Gmat::ObjectType type, const std::string &name):
Returns the current reference object of speci�ed type and name.

• virtual GmatBase* GetRefObject(const Gmat::ObjectType type, const std::string &name,
const Integer index): Returns the current reference object when there are multiple objects of a given
type. The referenced object is speci�ed by type, name, and index.

• virtual bool SetRefObject(GmatBase *obj, const Gmat::ObjectType type, const std::string
&name = ""): Passes a referenced object's pointer into the object.

• virtual bool SetRefObject(GmatBase *obj, const Gmat::ObjectType type, const std::string
&name, const Integer index): Passes a referenced object's pointer into the object for use in an
array of referenced objects.

• virtual ObjectArray& GetRefObjectArray(const Gmat::ObjectType type): Retrieves an
array of referenced objects by type.

Draft: Work in Progress
9.3. GMATBASE 63

• virtual ObjectArray& GetRefObjectArray(const std::string& typeString): Retrieves an ar-
ray of referenced objects by type name.

• virtual Integer GetOwnedObjectCount(): Retrieves the number of owned objects contained in
the object.

• virtual GmatBase* GetOwnedObject(Integer whichOne): Retrieves teh owned objects by in-
dex into the owned object array.

9.3.1.6 Class Attribute Accessors: Parameter Management
All of the attributes of the GmatBase classes that are accessible directly by users have associated descriptions,
ID numbers, and types. When attributes have these features, they will be referred to as parameters in this
chapter. Classes can have other attributes that are not directly accessible by users.

The parameters that are reported when an object is serialized are identi�ed and read and write enabled
parameters; those that are not contained in the serialization are nominally identi�ed as read only, though
the base class does not enforce read-only nature on those parameters. Classes that need strict read-only
enforcement implement that nature in the parameter access methods.

The parameter management interfaces are described here:

• virtual std::string GetParameterText(const Integer id) const: Returns the text string associ-
ated with the parameter ID input into the method.

• virtual Integer GetParameterID(const std::string &str) const: Returns the ID associated with
a parameter's description.

• virtual Gmat::ParameterType GetParameterType(const Integer id) const: Returns the pa-
rameter type for the speci�ed ID.

• virtual std::string GetParameterTypeString(const Integer id) const: Returns the parameter
type string for the input parameter ID.

• virtual bool IsParameterReadOnly(const Integer id) const: Returns true if the parameter,
identi�ed by parameter ID, is read-only. Derived classes override this method to identify read-only
parameters.

• virtual bool IsParameterReadOnly(const std::string &label) const: Returns true if the pa-
rameter, identi�ed by parameter name, is read-only. Derived classes override this method to identify
read-only parameters.

9.3.1.7 Static Members Used with Attributes
GmatBase includes several class-level (static) members used to simplify parameter access methods. These
members are speci�ed in the following tables.

String De�nitions for Attributes The arrays shown in Table 9.2 provide text strings for each of GMAT's
de�ned data types and object types. These strings are used to identify types in a human readable format.

Table 9.2: Arrays Holding De�ned Type Names
Type Array Name Purpose
static const std::string PARAM_TYPE_STRING[] String mappings for the GMAT data types
static const std::string OBJECT_TYPE_STRING[] String mappings for the GMAT object types

Draft: Work in Progress
64 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

Constants for Unde�ned Values Occasionally GMAT objects need an initial value for attribute initial-
ization when that value is not yet available. The static constants shown in Table 9.3 provide these initial
values.

Table 9.3: Constants Holding Unde�ned Values

Type Variable Name Value
const Real REAL_PARAMETER_UNDEFINED -987654321.0123e-45
const Integer INTEGER_PARAMETER_UNDEFINED -987654321
const UnsignedInt UNSIGNED_INT_PARAMETER_UNDEFINED 987654321
const std::string STRING_PARAMETER_UNDEFINED "STRING_PARAMETER-

_UNDEFINED"
const Rvector RVECTOR_PARAMETER_UNDEFINED A 1-element Rvec-

tor, initialized to
REAL_PARAMETER-
_UNDEFINED

const Rmatrix RMATRIX_PARAMETER_UNDEFINED A 1-by-1 Rmatrix, initialized
to REAL_PARAMETER-
_UNDEFINED

The following sections describe the interfaces used to access the parameters. These methods are type
speci�c; the parameter has to have the type accosiated with teh method in order to return a valid value.

9.3.1.8 Class Attributes: Real Number Interfaces
GmatBase objects support the following interfaces into Real number attributes:

• virtual Real GetRealParameter(const Integer id) const: Retrieves the Real value of the pa-
rameter with the speci�ed ID.

• virtual Real SetRealParameter(const Integer id,const Real value): Sets the Real value of the
parameter with the speci�ed ID.

• virtual Real GetRealParameter(const Integer id, const Integer index) const: Retrieves the
Real value of a parameter stored in a vector, where the vector is identi�ed by the speci�ed ID, and the
requested element has the speci�ed index.

• virtual Real GetRealParameter(const Integer id, const Integer row, const Integer col)
const: Retrieves the Real value of a parameter stored in an array, where the array is identi�ed by the
speci�ed ID, and the requested element is located in the speci�ed row and column.

• virtual Real SetRealParameter(const Integer id, const Real value, const Integer index):
Sets the Real value of a parameter stored in a vector, where the vector is identi�ed by the speci�ed
ID, and the requested element has the speci�ed index.

• virtual Real SetRealParameter(const Integer id, const Real value, const Integer row, const
Integer col): Sets the Real value of a parameter stored in an array, where the array is identi�ed by
the speci�ed ID, and the requested element is located in the speci�ed row and column.

• virtual Real GetRealParameter(const std::string &label) const: Retrieves the Real value of
the parameter with the text label.

Draft: Work in Progress
9.3. GMATBASE 65

• virtual Real SetRealParameter(const std::string &label, const Real value): Sets the Real
value of the parameter with the speci�ed text label.

• virtual Real GetRealParameter(const std::string &label, const Integer index) const: Re-
trieves the Real value of a parameter stored in a vector, where the vector is identi�ed by the speci�ed
text label, and the requested element has the speci�ed index.

• virtual Real SetRealParameter(const std::string &label, const Real value, const Integer
index): Sets the Real value of a parameter stored in a vector, where the vector is identi�ed by the
speci�ed text label, and the requested element has the speci�ed index.

• virtual Real GetRealParameter(const std::string &label, const Integer row, const Integer
col) const: Retrieves the Real value of a parameter stored in an array, where the array is identi�ed
by the speci�ed text label, and the requested element is located in the speci�ed row and column.

• virtual Real SetRealParameter(const std::string &label, const Real value, const Integer
row, const Integer col): Sets the Real value of a parameter stored in an array, where the array
is identi�ed by the speci�ed text label, and the requested element is located in the speci�ed row and
column.

• virtual const Rvector& GetRvectorParameter(const Integer id) const: Retrieves a vector of
Real data, contained in an Rvector instance, with the speci�ed ID.

• virtual const Rvector& SetRvectorParameter(const Integer id, const Rvector &value):
Sets a vector of Real data, contained in an Rvector, with the speci�ed ID.

• virtual const Rmatrix& GetRmatrixParameter(const Integer id) const: Retrieves an array
of Real data, contained in an Rmatrix instance, with the speci�ed ID.

• virtual const Rmatrix& SetRmatrixParameter(const Integer id, const Rmatrix &value):
Sets an array of Real data, contained in an Rmatrix instance, with the speci�ed ID.

• virtual const Rvector& GetRvectorParameter(const std::string &label) const: Retrieves a
vector of Real data, contained in an Rvector instance, with the speci�ed text label.

• virtual const Rvector& SetRvectorParameter(const std::string &label, const Rvector
&value): Sets a vector of Real data, contained in an Rvector, with the speci�ed text label.

• virtual const Rmatrix& GetRmatrixParameter(const std::string &label) const: Retrieves
an array of Real data, contained in an Rmatrix instance, with the speci�ed text label.

• virtual const Rmatrix& SetRmatrixParameter(const std::string &label, const Rmatrix
&value): Sets an array of Real data, contained in an Rmatrix instance, with the speci�ed text label.

9.3.1.9 Class Attributes: Integer Interfaces
The access methods used for integer parameters � both signed and unsigned � are listed here:

• virtual Integer GetIntegerParameter(const Integer id) const: Retrieves the Integer value of
the parameter with the speci�ed ID.

• virtual Integer SetIntegerParameter(const Integer id, const Integer value): Sets the Integer
value of the parameter with the speci�ed ID.

• virtual Integer GetIntegerParameter(const Integer id, const Integer index) const: Retrieves
the Integer value of a parameter stored in a vector, where the vector is identi�ed by the speci�ed ID,
and the requested element has the speci�ed index.

Draft: Work in Progress
66 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

• virtual Integer SetIntegerParameter(const Integer id, const Integer value, const Integer
index): Sets the Real value of a parameter stored in a vector, where the vector is identi�ed by the
speci�ed ID, and the requested element has the speci�ed index.

• virtual UnsignedInt GetUnsignedIntParameter(const Integer id) const: Retrieves the un-
signed Integer value of the parameter with the speci�ed ID.

• virtual UnsignedInt SetUnsignedIntParameter(const Integer id, const UnsignedInt value):
Sets the unsigned Integer value of the parameter with the speci�ed ID.

• virtual UnsignedInt GetUnsignedIntParameter(const Integer id, const Integer index)
const: Retrieves the unsigned Integer value of a parameter stored in a vector, where the vector is
identi�ed by the speci�ed ID, and the requested element has the speci�ed index.

• virtual UnsignedInt SetUnsignedIntParameter(const Integer id, const UnsignedInt value,
const Integer index): Sets the unsigned Integer value of a parameter stored in a vector, where the
vector is identi�ed by the speci�ed ID, and the requested element has the speci�ed index.

• virtual const UnsignedIntArray& GetUnsignedIntArrayParameter(const Integer id) const:
Retrieves an array of unsigned Integers identi�ed by the speci�ed ID.

• virtual Integer GetIntegerParameter(const std::string &label) const: Retrieves an Integer
parameter identi�ed by the speci�ed text label.

• virtual Integer SetIntegerParameter(const std::string &label, const Integer value): Sets
an Integer parameter identi�ed by the speci�ed text label

• virtual Integer GetIntegerParameter(const std::string &label, const Integer index) const:
Retrieves the Integer value of a parameter stored in a vector, where the vector is identi�ed by the
speci�ed text label and the requested element has the speci�ed index.

• virtual Integer SetIntegerParameter(const std::string &label, const Integer value, const
Integer index): Sets the Integer value of a parameter stored in a vector, where the vector is identi�ed
by the speci�ed text label and the requested element has the speci�ed index.

• virtual UnsignedInt GetUnsignedIntParameter(const std::string &label) const: Retrieves
the unsigned Integer value of a parameter identi�ed by a text label.

• virtual UnsignedInt SetUnsignedIntParameter(const std::string &label, const UnsignedInt
value): Sets the unsigned Integer value of a parameter identi�ed by a text label.

• virtual UnsignedInt GetUnsignedIntParameter(const std::string &label, const Integer in-
dex) const: Retrieves the unsigned Integer value of a parameter stored in a vector, where the vector
is identi�ed by a text label, and the requested element has the speci�ed index.

• virtual UnsignedInt SetUnsignedIntParameter(const std::string &label, const UnsignedInt
value, const Integer index): Sets the unsigned Integer value of a parameter stored in a vector, where
the vector is identi�ed by a text label, and the requested element has the speci�ed index.

• virtual const UnsignedIntArray& GetUnsignedIntArrayParameter(const std::string &la-
bel) const: Retrieves an array of unsigned Integers identi�ed by a text label.

Draft: Work in Progress
9.3. GMATBASE 67

9.3.1.10 Class Attributes: String Interfaces
String interfaces are used to set reference object names, along with other textual data used inside of the
GmatBase objects. The string interfaces into GmatBase parameters are described here:

• virtual std::string GetStringParameter(const Integer id) const: Retrieves the string value of
the parameter with the speci�ed ID.

• virtual bool SetStringParameter(const Integer id, const std::string &value): Sets the string
value of the parameter with the speci�ed ID.

• virtual std::string GetStringParameter(const Integer id, const Integer index) const: Re-
trieves a string from a vector of strings, where the vector has the speci�ed ID and the retrieved string
is in the vector element identi�ed by index.

• virtual bool SetStringParameter(const Integer id, const std::string &value, const Integer
index): Sets a string in a vector of strings, where the vector has the speci�ed ID and the input string
is placed in the vector element identi�ed by index.

• virtual std::string GetStringParameter(const std::string &label) const: Retrieves the string
value of the parameter with the speci�ed text label.

• virtual bool SetStringParameter(const std::string &label, const std::string &value): Sets
the string value of the parameter with the speci�ed text label.

• virtual std::string GetStringParameter(const std::string &label, const Integer index) const:
Retrieves a string from a vector of strings, where the vector has the speci�ed text label and the retrieved
string is in the vector element identi�ed by index.

• virtual bool SetStringParameter(const std::string &label, const std::string &value, const
Integer index): Sets a string in a vector of strings, where the vector has the speci�ed text label and
the input string is placed in the vector element identi�ed by the speci�ed index.

• virtual const StringArray& GetStringArrayParameter(const std::string &label) const: Re-
trieves a vector of strings stored in the vector associated with a text label.

• virtual const StringArray& GetStringArrayParameter(const std::string &label, const In-
teger index) const: Retrieves a vector of strings from a vector of string arrays identi�ed by a text
label. The retrieved vector is identi�ed by index into the vector of string arrays.

• virtual const StringArray& GetStringArrayParameter(const Integer id) const: Retrieves a
vector of strings stored in the parameter associated with an ID.

• virtual const StringArray& GetStringArrayParameter(const Integer id, const Integer in-
dex) const: Retrieves a vector of strings from a vector of string arrays identi�ed by ID. The retrieved
vector is identi�ed by index into the vector of string arrays.

9.3.1.11 Class Attributes: Boolean Interfaces
GmatBase supports two types of boolean parameters: standard C++ bool values and a sttring version of
boolean data, set to either the string �On� or �O�.� The interfaces implemented into these parameters is
presented here:

• virtual bool GetBooleanParameter(const Integer id) const: Retrieves the boolean value of the
parameter with the speci�ed ID.

Draft: Work in Progress
68 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

• virtual bool SetBooleanParameter(const Integer id, const bool value): Sets the boolean value
of the parameter with the speci�ed ID.

• virtual bool GetBooleanParameter(const Integer id, const Integer index) const: Retrieves
a boolean from a vector of booleans, where the vector has the speci�ed ID and the retrieved boolean
is in the vector element identi�ed by index.

• virtual bool SetBooleanParameter(const Integer id, const bool value, const Integer index):
Sets a boolean into a vector of booleans, where the vector has the speci�ed ID and the input boolean
is in the vector element identi�ed by index.

• virtual bool GetBooleanParameter(const std::string &label) const: Retrieves the boolean
value of the parameter with the speci�ed text label.

• virtual bool SetBooleanParameter(const std::string &label, const bool value): Sets the
boolean value of the parameter with the speci�ed text label.

• virtual bool GetBooleanParameter(const std::string &label, const Integer index) const:
Retrieves a boolean from a vector of booleans, where the vector has the speci�ed text label and the
retrieved boolean is in the vector element identi�ed by index.

• virtual bool SetBooleanParameter(const std::string &label, const bool value, const Inte-
ger index): Sets a boolean into a vector of booleans, where the vector has the speci�ed text label and
the input boolean is in the vector element identi�ed by index.

• virtual std::string GetOnO�Parameter(const Integer id) const: Retrieves the state value (�On�
or �O��) of the parameter with the speci�ed ID.

• virtual bool SetOnO�Parameter(const Integer id, const std::string &value): Sets the state
value (�On� or �O��) of the parameter with the speci�ed ID.

• virtual std::string GetOnO�Parameter(const std::string &label) const: Retrieves the state
value (�On� or �O��) of the parameter with the speci�ed text label.

• virtual bool SetOnO�Parameter(const std::string &label, const std::string &value): Sets
the state value (�On� or �O��) of the parameter with the speci�ed text label.

9.3.2 Setting GmatBase Properties
The somewhat tedious descriptions provided above show the interfaces into parameters for the con�gured
objects in a static format. The next two sections show in a bit more detail how these interfaces are used
to set parameters and to construct a serialized version of a GmatBase object. We'll begin with an example
setting several properties on an ImpulsiveBurn object. The class hierarchy for ImpulsiveBurns is shown in
Figure 9.1.

1 Create ImpulsiveBurn Burn1;
2

3 Burn1.Origin = Earth;
4 Burn1.Axes = VNB;
5 Burn1.VectorFormat = Cartesian;
6 Burn1.Element1 = 3.16;
7 Burn1.Element2 = 0;
8 Burn1.Element3 = 0;

Listing 9.1: Script Listing for an ImpulsiveBurn

Draft: Work in Progress
9.3. GMATBASE 69

Figure 9.1: Class Hierarchy for Gmat's Burn Resources

The serialized text � that is, the scripting � for an ImpulsiveBurn object is shown in Listing 9.1. As
can be seen on lines 3 � 8 in this listing, ImpulsiveBurn objects have six accessible parameters that users
can manipulate: the Origin of the burn (�Origin�), the Axes used to orient the burn in space (�Axes�), a
format de�ning how the burn is written relative to these axes (�VectorFormat�), and the three components
necessary to de�ne the delta-V that this burn models (�Element1�, �Element2�, and �Element3�).

When GMAT reads a script containing these lines, it creates a new ImpulsiveBurn object named Burn1
and sets the values found in the script into the associated parameters on the object. The object creation
process was described in Section 3.2.2.1. Figure 9.2 shows the calls made to the new object to set the
parameter values. The steps shown in this �gure are straightforward:

1. Call Burn1->GetParameterType(�Origin�) Determines that the �Origin� parameter is a string.

2. Call Burn1->SetStringParameter(�Origin�, �Earth�) Sets the �Origin� parameter to the string
�Earth�.

3. Call Burn1->GetParameterType(�Axes�) Determines that the �Axes� parameter is a string.

4. Call Burn1->SetStringParameter(�Axes�, �VNB�) Sets the �Axes� parameter to the string
�VNB�, denoting that the burn is speci�ed in the Velocity-Normal-Binormal representation.

5. Call Burn1->GetParameterType(�VectorFormat�) Determmines that the �VectorFormat� pa-
rameter is a string.

6. Call Burn1->SetStringParameter(�VectorFormat�, �Cartesian�) Sets the �VectorFormat� pa-
rameter to the string �Cartesian�.

7. Call Burn1->GetParameterType(�Element1�) Determines that the �Element1� parameter is a
Real number.

8. Call Burn1->SetRealParameter(�Element1�, 3.16) Sets the �Element1� parameter to the value
3.16.

9. Call Burn1->GetParameterType(�Element2�) Determines that the �Element2� parameter is a
Real number.

10. Call Burn1->SetRealParameter(�Element2�, 0) Sets the �Element2� parameter to the value 0.0.

Draft: Work in Progress
70 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

11. Call Burn1->GetParameterType(�Element3�) Determines that the �Element3� parameter is a
Real number.

12. Call Burn1->SetRealParameter(�Element3�, 0) Sets the �Element3� parameter to the value 0.0.

Figure 9.2: Parameter Setting for Listing 9.1

9.3.3 Serializing GmatBase Objects
Objects are written to text using the GetGeneratingString() method. GetGeneratingString can serialize
objects this way for several purposes: to write an object to a script �le, to pass the object to MATLAB
or a MATLAB compatible external process, or in some cases to generate data used for the generation
of an ephemeris �le. The mode used for the serialization is determined using a setting on the call to
GetGeneratingString(). That setting, the write mode, is set using the WriteMode enumeration.

Draft: Work in Progress
9.3. GMATBASE 71

The following paragraphs describe the process followed when performing serialization of GmatBase ob-
jects. We begin with a brief description of the WriteMode enumeration, followed by a detailed description
of the call to GetGeneratingString that serializes an object for scripting purposes, and conclude with a
description of the di�erences encountered when serializing an object for MATLAB.

9.3.3.1 The WriteMode Enumeration
Table 9.4 shows the modes available to the GetGeneratingString methods for serialization of objects in
GMAT. These modes are de�ned in an enumeration, WriteMode, contained in the Gmat namespace. GMAT
uses the SCRIPTING mode as the default write mode, generating text strings that are designed to work
with the script interpreter classes when saving a model to a script �le.

Table 9.4: The WriteMode Enumeration
Identi�er Description
SCRIPTING The mode used when writing an object as it appears in GMAT's

script �les.
SHOW_SCRIPT Similar to the SCRIPTING mode, the SHOW_SCRIPT mode

serializes an object as it would appear in a script �le. The
SHOW_SCRIPT mode does not guarantee that the resulting text
is indented as it would be in a written script.

OWNED_OBJECT OWNED_OBJECT mode is used to serialize the objects owned by
an object that is being written to the text stream.

MATLAB_STRUCT Generates the serialed object as a MATLAB structuire, so that the
object can be passed into MATLAB for external processing.

EPHEM_HEADER Generates a string used in GMAT's output ephemeris headers.

9.3.3.2 Writing to Script
Figure 9.3 shows the procedure followed when the GetGeneratingString() method is called on a con�gured
object to write that object in script format2. The process starts by clearing the current generatingString
attribute, and then writing the initial Create line to it. Objects without any parameters or owned objects
are �nished at this point, and simply return the resulting string, following the path shown in green in the
�gure.

If the object's parameter count is not zero, then the GetGeneratingString() method calls the WritePa-
rameters() method, which adds text lines to the generatingString for each parameter that is writable. This
process is shown in yellow in the �gure. The process starts by initializing an index into the parameter list for
the object. This index is used to loop through the parameters for the object. For each parameter, the code
calls the IsParameterReadOnly() method to determine if the parameter should be written to teh generating
string. If the parameter is not read only, the current value of the parameter is sent into a string in the
WriteParameterValue() method. The WriteParameterValue method determines the type of the parameter,
and calls the corresponding access method to retrieve the value and place it into a string. This string is
returned to the WriteParameters() method for use as the right hand side of the text string setting the pa-
rameter's value. The parameter setting string is then build, using a call to GetParameterText() for the left
side of the parameter setting string and the string returned from the call to WriteParameterValue() for the
right side of the parameter setting string. The resulting string is added to the generating string, and the
parameter index is incremented to move to the next parameter.

2GetGeneratingString() can be overridden by the derived classes. The description provided here is the default behavior.
Command classes, in particular, always override this method so that the command speci�c scripting can be generated.

Draft: Work in Progress
72 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

Figure 9.3: Flow in the GetGeneratingString() Method

Once the parameter index has iterated through all of the parameters, the call to WriteParameters()
returns control to the GetGeneratingString() method. GetGeneratingString() resets its index, and then
checks for owned objects. If there are any owned objects, each owned object writes its data to the generating
string, following the process shown in orange in the �gure. Owned objects write their data through calls
to their GetGeneratingString() methods, with the write mode set to teh OWNED_OBJECT mode. After
all of the owned objects have been written, the generating string is returned to the caller, completing the
serialization process.

Listing 9.2 shown an example of the output generated when a coordinate system is written to script.

1 Create CoordinateSystem SunPointingCS;
2 GMAT SunPointingCS.Origin = DefaultSC;
3 GMAT SunPointingCS.Axes = ObjectReferenced;
4 GMAT SunPointingCS.UpdateInterval = 60;
5 GMAT SunPointingCS.OverrideOriginInterval = false;
6 GMAT SunPointingCS.XAxis = R;
7 GMAT SunPointingCS.ZAxis = N;
8 GMAT SunPointingCS.Primary = DefaultSC;
9 GMAT SunPointingCS.Secondary = Sun;

Draft: Work in Progress
9.3. GMATBASE 73

Listing 9.2: Script Listing for a Coordinate System

9.3.3.3 Writing to MATLAB
The process followed when an object is serialized for export to MATLAB is the same as that shown in the
sequence diagram for writing to script, Figure 9.3. The key di�erences between the processes are contained
in the details of the strings generated. When an object is serialized for MATLAB, the Create line is omitted.
The �GMAT� preface used for parameter strings in SCRIPTING mode is also omitted, and strings are
enclosed in single quotes to conform to MATLAB's syntax. Listing 9.3 shows the resulting serailized version
of the same coordinate system as was shown in the script serialization example, above.

1 SunPointingCS.Origin = 'DefaultSC '
2 SunPointingCS.Axes = 'ObjectReferenced '
3 SunPointingCS.UpdateInterval = 60
4 SunPointingCS.OverrideOriginInterval = false
5 SunPointingCS.XAxis = 'R'
6 SunPointingCS.ZAxis = 'N'
7 SunPointingCS.Primary = 'DefaultSC '
8 SunPointingCS.Secondary = 'Sun'

Listing 9.3: MATLAB Listing for a Coordinate System

9.3.4 GmatBase Derivatives

Figure 9.4: Classes Derived from GmatBase

Figure 9.4 shows the classes derived from GmatBase. These classes are presented more fully in other
chapters of this document. Here is a brief description of each, with cross references to the chapters that
provide the detailed descriptions:
AtmosphereModel Models the Atmosphere for bodies in the SolarSystem. The AtmosphereModel classes

are used to determine atmospheric densities in GMAT's Drag models. Force modeling is described in
Chapter 21.

Draft: Work in Progress
74 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

Attitude The base class for attitude modeling in GMAT. Attitude modeling is described in Chapter 15.

Burn The base class for burn modeling. The Burn class contains the elements common to �nite and
impulsive burns. The burn classes and other components used in maneuver modeling are described in
Chapter 22.

CoordinateBase The base class for coordinate system modeling. GMAT provides a quite extensive system
of coordinate system models, described in Chapter 12.

Function The base class for internal and external functions, described in Chapter 27.

GmatCommand The base class for the commands in the Mission Control Sequence. Commands are
described in Chapters 23 and 24.

Hardware The base class for hardware elements that can be attached to other objects. Fuel tanks,
thrusters, sensors, and antennae are all derived from this class. THe Hardware classes are described in
Chapter 14.

Interpolator The base class for the numerical interpolaters. The interpolators are described in Chapter 10.

MathNode GMAT supports mathematics performed as part of the Mission Control Sequence. Mathemat-
ical expressions are decomposed into a tree structure for evaluation. The MathNode class is used for
the nodes in this tree structure, as is described in Chapter 26.

MathTree MathTree objects are used as containers for inline mathematicas in GMAT's Mission Control
Sequence, as is described in Chapter 26.

Parameter GMAT can calculate many di�erent properties that are useful for analyzing spacecraft mis-
sions. The code that implements these calculations is derived from the Parameter class, described in
Chapter 19.

PhysicalModel The PhysicalModel class is the base class for all of the forces used in GMAT's propagators.
Force mdodeling is described in Chapter 21.

Propagator The Propagator class is the base class for the numerical integrators and analytic propagators3
in GMAT. Propagators are described in Chapter 20.

PropSetup The PropSetup class is a container class that connects propagators to force models. When a
user creates a �Propagator� in GMAT, the object that is created is really a PropSetup instance. The
PropSetup class description is in Chapter 20.

SolarSystem The SolarSystem class is the container class used to hold all of the elements of the space
environment: stars, planets, moons, other celestial bodies, calculated points, and any other entities
that are used in the environment model. The SolarSystem instances include speci�cation of global
sources for the model as well � for example, identi�cation of the planetary ephemeris souce used.
These elements are described in Chapter 11.

Solver Solver classes are used to drive targeting, optimization, and parametric analysis tasks. The Solvers
are described in Chapter 25.

SpacePoint All objects that have a physical location in the solar system are derived from the SpacePoint
class. This class is the base class for everything from elements of the solar system to the spacecraft
and groundstations. The SpacePoint class is described in Chapter 11.

3GMAT does not currently contain any analytic propagators; when such propagators are added to the system, they will be
derived from the Propagator class.

Draft: Work in Progress
9.4. NAMESPACES 75

StopCondition GMAT's integrators can stop when any of a large set of conditions is met. This ability to
stop is provided through the stopping condition class, described in Chapter 19.

Subscriber Subscribers are the recipients of data in GMAT's publish and subscribe subsystem, introduced
in Chapter 8. The Subscriber base class, used for all subscribers, is described in Chapter 6.

9.4 Namespaces
GMAT uses several namespaces de�ned for speci�c purposes. The �Gmat� namespace is used to de�ne
program speci�c enumerations de�ning the types of objects users can con�gure in GMAT, the types of
data structures commonly used in the system, and more specialized enumerations used by some of GMAT's
subsystems.

9.5 Enumerations
GMAT uses enumerations to identify some of the key types of objects and parameters in the system, the
current state of the system, and to track modes for some of the system processes. The remainder of this
chapter tabulates the enumerations that are not listed in other places in this document.

9.5.1 The ParameterType Enumeration
GmatBase includes a method, GetParameterType(id), which returns an integer identi�er for the type of
the parameter with the ID input to the function. The return value is a member of the ParameterType
enumeration, de�ned in the Gmat namespace. This enumeration is described in Table 9.5.

Table 9.5: The ParameterType Enumeration
Identi�er Description
INTEGER_TYPE Integer parameters
UNSIGNED_INT_TYPE Unsigned integer paramneters.
UNSIGNED_INTARRAY_TYPE Arrays of unsigned integers.
REAL_TYPE Real numbers.
REAL_ELEMENT_TYPE A Real number accessed from an array.
STRING_TYPE A string.
STRINGARRAY_TYPE A vector of strings.
BOOLEAN_TYPE A boolean value that evaluates to tru or false.
RVECTOR_TYPE An Rvector
RMATRIX_TYPE An Rmatrix
TIME_TYPE A Real used to represent time.
OBJECT_TYPE An object.
OBJECTARRAY_TYPE A vector of objects.
ON_OFF_TYPE A boolean that evaluates to either �On� or �O��
TypeCount The totla number of ParameterTypes available.
UNKNOWN_PARAMETER_TYPE Unknown parameter types.

Set to -1.

Draft: Work in Progress
76 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

9.5.2 The WrapperDataType Enumeration
Some components of GMAT need to access data elements in a generic fashion. These components, most
notably including the Command subsystem, use a class of wrapper objects that take the disparate types
and present a common interface into those types. The WrapperDataType enumeration is used to identify
the type of underlying object presented by the wrapper classes. More information about this object can be
found in Section 23.4.3. The de�ned wrapper types used in this enumeration are shown in Table 9.6.

Table 9.6: The WrapperDataType Enumeration
Identi�er Description
NUMBER a Real or Integer value entered explicitly into the command
STRING a text string with no associated object
OBJECT_PROPERTY an internal data member of an object, accessible using the Gmat-

Base parameter accessor methods (GetRealParameter(), GetInte-
gerParameter(), etc)

VARIABLE an instance of the Variable class
ARRAY an instance of the Array class
ARRAY_ELEMENT an element of an Array object
PARAMETER_OBJECT any other object derived from the Parameter class

9.5.3 The ObjectType Enumeration
GMAT has an enumeration in the Gmat namespace designed to provide ID values for each of the core types
used in the system. Table 9.7 shows the identi�ers for each entry in this enumeration, along with a brief
description of the type of object the entry identi�es.

9.5.4 The RunState Enumeration
The GMAT engine is always maintained in a speci�c state while the system is running, as is described in
Section 4.2.1.5. The RunState enumeration, tabulated in Table 9.8 is used to track these states.

Draft: Work in Progress
9.5. ENUMERATIONS 77

Table 9.7: The ObjectType Enumeration
Identi�er Objects Identi�ed Notes & References
SPACECRAFT Spacecraft Initialized to 1001

Chapter 13
FORMATION Formations Chapter 13
SPACEOBJECT Spacecraft and Formations Chapter 13
GROUND_STATION Groundstations Not yet used
BURN Burn objects for �nite and impulsive ma-

neuvers
Chapter 22

COMMAND Commands in the Mission Control Se-
quence

Chapters 23 and 24

PROPAGATOR Propagators and Integrators Chapter 20
FORCE_MODEL Force Models Chapter 21
PHYSICAL_MODEL Individual Forces Chapter 21
TRANSIENT_FORCE Forces that are dynamically added or re-

moved
Chapter 22

INTERPOLATOR Interpolators Chapter 10
SOLAR_SYSTEM Solar System Chapter 11
SPACE_POINT Objects that have physical locations in

the Solar System
Chapter 11

CELESTIAL_BODY Stars, Planets, and Moons Chapter 11
CALCULATED_POINT Barycenters and Libration Points Chapter 11
LIBRATION_POINT Libration Points Chapter 11
BARYCENTER Barycenters Chapter 11
ATMOSPHERE Atmosphere Models Chapter 21
PARAMETER Calculated Parameters, Variables, and

Arrays
Chapter 19

STOP_CONDITION Stopping Conditions Chapter 19
SOLVER Targeters, Optimizers, and Scanners Chapter 25
SUBSCRIBER Subscribers Chapter 6
PROP_SETUP PropSetups Chapter 20
FUNCTION Internal or External Functions Chapter 27
FUEL_TANK Fuek Tanks Chapter 14
THRUSTER Thrusters Chapter 14
HARDWARE Tanks, Thrusters, Antennae, Sensors, etc. Chapter 14
COORDINATE_SYSTEM Coordinate Systems Chapter 12
AXIS_SYSTEM Axis Systems Chapter 12
ATTITUDE Attitude Chapter 15
MATH_NODE Elements of Equations Chapter 26
MATH_TREE Parsed Mathematical Equations Chapter 26
UNKNOWN_OBJECT Objects that are not otherwise identi�ed Objects without one of the

types listed above

Draft: Work in Progress
78 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

Table 9.8: The RunState Enumeration
Identi�er Description
IDLE Initialized to 10000. The IDLE state indicates that GMAT's engine

is waiting for instructions from the user.
RUNNING GMAT enters the RUNNING state when the user starts a mission

run.
PAUSED When the user presses the Pause button on the GUI, GMAT enters

the PAUSED state.
TARGETING GMAT enters the TARGETING state when the Mission Control

Sequence enters a Target loop.
OPTIMIZING GMAT enters the TARGETING state when the Mission Control

Sequence enters an Optimize loop.
SOLVING GMAT enters the TARGETING state when the Mission Control

Sequence enters other solver loops.
WAITING GMAT de�nes the WAITING state for use when waiting for com-

pletion of an external process. The current code does not use the
WAITING state.

Draft: Work in Progress

Chapter 10

Utility Classes and Helper Functions

Darrel J. Conway
Thinking Systems, Inc.

This chapter documents the classes and functions that are used by GMAT to support program function-
ality.

10.1 The MessageInterface
10.2 Exception Classes
10.3 Mathematical Utilities
10.3.1 The Rvector and Rmatrix Classes
10.3.2 Interpolators

10.4 The GmatStringUtil Namespace

79

Draft: Work in Progress
80 CHAPTER 10. UTILITY CLASSES AND HELPER FUNCTIONS

Draft: Work in Progress

Chapter 11

The Space Environment

Darrel J. Conway
Thinking Systems, Inc.

The core purpose of GMAT is to perform �ight dynamics simulations for spacecraft �ying in the solar
system. There are many di�erent components that users interact with to produce this model. In this chapter,
the architecture for the elements that comprise the model is introduced. The elements that are not directly
manipulated in the model � speci�cally, the Sun, planets, moons, and related points that comprise the stage
on which the spacecraft and related objects perform their actions � are described in some detail in the
chapter. Descriptions for the other objects � most speci�cally spacecraft and formations � introduced here
appear in chapters for those components. References for those chapters are provided when the objects are
introduced.

11.1 Components of the Model
The environmental elements that have a spatial location and evolve over time in the GMAT model are all
derived from the SpacePoint class. The class hierarchy, shown in Figure 11.1, includes classes that model
the objects and special locations in GMAT's solar system � referred to as �background� objects because their
evolution is modeled through precalculated ephemerides or computations performed o� of these precalculated
data � along with the pieces that are directly manipulated in the mission control sequence and that evolve
through numerical integration using GMAT's propagation subsystem. In the �gure, the classes used to
model background objects are shown in purple; those that evolve through direct modeling in GMAT using
the propagation subsystem are shown in blue, and other elements that will be incorporated in the future, in
red.

The space environment as de�ned in this document consists of the elements that, while dynamic, are
automatically updated as the model evolves, based on epoch data generated for the model. These elements
are the gravitating bodies in the model � that is, the Sun and the planets and their moons � and points
with specialized signi�cance in �ight dynamics, like the Lagrange points and gravitational barycenters. All
of these elements are managed in an instance of the SolarSystem class. SolarSystem acts as a container, and
manages both the objects in the space environment and the resources needed to calculate ephemerides for
these objects. The bulk of this chapter provides details about the classes and objects comprising this space
environment.

A key feature of GMAT is the ability to model spacecraft and formations of spacecraft as they move
through the space environment. These elements of the model are con�gured in detail by GMAT users,
and evolve through time using precision numerical integrators con�gured by the users. The Spacecraft and
Formation classes, along with their base SpaceObject class, are discussed in detail in Chapter 13. The
numerical integrators and associated force model components are presented in Chapter 20.

81

Draft: Work in Progress
82 CHAPTER 11. THE SPACE ENVIRONMENT

Figure 11.1: Objects in the GMAT Model.
The elements shown in purple are core constituents of GMAT's solar system. Classes shown in yellow are
GMAT base classes. Elements shown in blue are the key components studied in GMAT's model: Spacecradft
and Formations of Spacecraft. Those shown in red are future enhancements, primarily focussed on contact
analysis with di�erent types of objects.

The class hierarchy includes provisions for future model elements attached to components of the space
environment. These classes, FixedObject and the derived GroundStation, FixedTarget and FixedRegion
classes, will be documented at a later date in preparation for implementation.

Before proceeding with a detailed description of GMAT's space environment, the base class used for all
of the model elements needs some explanation. Those details are provided in the next section.

11.2 The SpacePoint Class
All spatially modeled components need some common data in order to de�ne the positions of objects in the
model. These data are collected in the SpacePoint base class. This base class provides the foundation for
objects used to de�ne coordinate systems (see Chapter 12), for the user con�gured Spacecraft and Formations
(see Chapter 13), and for other specialized points and objects in the space environment.

Figure 11.2 shows the elements of the SpacePoint class. In order for GMAT to accurately model �ight

Draft: Work in Progress
11.2. THE SPACEPOINT CLASS 83

Figure 11.2: The SpacePoint Class

dynamics problems, the GMAT space model needs to specify an internal origin and coordinate system
orientation used as a reference for computations. SpacePoint de�nes one object, the J2000 body, which is
used to de�ne that origin. GMAT uses the Mean-of-J2000 Earth Equatorial axis system as the orientation
for all such calculations.

Class Attributes SpacePoint de�nes two data members to track the J2000 body:

• SpacePoint* j2000Body: The body used to de�ne the coordinate origin for the SpacePoint.

• std::string j2000BodyName: The name of the body de�ning the coordinate origin.

Methods All classes derived from SpacePoint inherit the implementation of six methods used to set
and access the J2000 body. Five of these methods are used speci�cally for the internal data members; the
sixth, GetMJ2000Acceleration(), provides a default implementation so that derived classes that do not have
acceleration data do not need to provide an implementation

• bool RequiresJ2000Body(): Returns a boolean used to determine if the SpacePoint requires a
J2000 body.

• const std::string& GetJ2000BodyName(): Returns the name of the J2000 body for the Space-
Point.

• SpacePoint *GetJ2000Body(): Returns the pointer to the J2000 body for the SpacePoint.

• bool SetJ2000BodyName(const std::string &toName): Sets the name of the J2000 body for
the SpacePoint.

• void SetJ2000Body(SpacePoint *toBody): Sets the pointer to the J2000 body for the SpacePoint.

Draft: Work in Progress
84 CHAPTER 11. THE SPACE ENVIRONMENT

• Rvector3 GetMJ2000Acceleration(const A1Mjd &atTime): Returns the Cartesian accelera-
tion of the SpacePoint relative to its J2000 body at the speci�ed epoch. The default implementation
returns [0.0, 0.0, 0.0]; derived classes that contain acceleration data should override this method.

Abstract Methods Each subclass of SpacePoint implements three pure virtual methods de�ned in the
class, using computations speci�c to that subclass. THese abstract methods have the following signatures:

• virtual Rvector6 GetMJ2000State(const A1Mjd &atTime) = 0: Returns the Cartesian state
of the SpacePoint relative to its J2000 body at the speci�ed epoch.

• virtual Rvector3 GetMJ2000Position(const A1Mjd &atTime) = 0: Returns the Cartesian
location of the SpacePoint relative to its J2000 body at the speci�ed epoch.

• virtual Rvector3 GetMJ2000Velocity(const A1Mjd &atTime) = 0: Returns the Cartesian
velocity of the SpacePoint relative to its J2000 body at the speci�ed epoch.

11.3 The Solar System Elements
GMAT provides a container class, SolarSystem, that is used to manage the objects modeling the space
environment.

11.3.1 The SolarSystem Class
11.3.1.1 Members and Methods
11.3.1.2 Ephemeris Sources

11.3.2 The CelestialBody Class Hierarchy
11.3.2.1 Stars
11.3.2.2 Planets
11.3.2.3 Moons

11.4 The PlanetaryEphem Class

Draft: Work in Progress

Chapter 12

Coordinate Systems

Darrel J. Conway
Thinking Systems, Inc.

NOTE: This chapter currently contains the original design spec for the coordinate systems.
It needs to be reviewed against the current GMAT system, the �gures need to be recreated,
and some of the text needs to be �tted into the rest of the design document.

This chapter presents design guidelines for the coordinate system classes in the Goddard Mission Analysis
Tool (GMAT). It describes how the GMAT software implements the coordinate system math described in the
GMAT Mathematical Speci�cations[MathSpec]. This description includes the initial design for the classes
that provide coordinate system support in GMAT. The interactions between these classes and the rest of
the GMAT system are also described.

12.1 Introduction
The Goddard Mission Analysis Tool (GMAT) is a multi-platform orbit simulator designed to support multiple
spacecraft missions �ying anywhere in the solar system. GMAT is written in C++ and runs on Windows,
Macintosh and Linux computer systems. The tool provides an integrated interface to MATLAB, a high level
computing environment from the Mathworks, Inc[matlab]. The GMAT graphical user interface (GUI) is
written using the wxWidgets GUI Toolkit[wx], an open source library that compiles and runs under all of
the target operating systems.

GMAT is an object-oriented system, using the full extent of the C++ language to implement the object
model that provides GMAT's functionality. The �rst three builds of GMAT provided capabilities to model
orbits in the vicinity of the Earth, including detailed force modeling, impulsive maneuvers, and parameter
targeting using a di�erential corrector. All of these capabilities can be controlled either using either the
GMAT graphical user interface or a custom scripting language designed to simplify GMAT and MATLAB
interactions. The fourth build of the system generalizes the capabilities of GMAT modeling for other orbital
regimes.

In order to model spacecraft trajectories in these regimes, GMAT needs to be able to represent the
spacecraft state and related quantities in coordinate systems that are convenient to each regime. This
document describes how these coordinate systems are implemented in the GMAT code.

12.2 Coordinate System Classes
Figure 12.1 shows the core C++ classes (drawn using Poseidon[poseidon]) added to GMAT to provide support
for coordinate systems in Build 4. The coordinate system capabilities are provided by the incorporation of

85

Draft: Work in Progress
86 CHAPTER 12. COORDINATE SYSTEMS

these classes into the GMAT base subsystem1.

Figure 12.1: Coordinate System Classes in GMAT

The coordinate system classes consist of a CoordinateSystem class that acts as the interface between the
conversions and the rest of GMAT, an AxisSystem base class with a derived hierarchy used for rotational
conversions, a CoordinateConverter class that manages conversions between di�erent coordinate systems,
and a factory constructed as a singleton that create the AxisSystem objects. The CoordinateSystem class is
the component that is instantiated when a user �Creates� a coordinate system object.

Previous builds of GMAT included classes that model spacecraft, formations, and celestial objects. These
classes were derived from a core base class named GmatBase. A new intermediate class, SpacePoint, is
implemented in GMAT to make access to position, velocity, and rotational data available to the coordinate
system classes when needed. Section 12.2.4 describes this class.

12.2.1 The CoordinateSystem Class
The CoordinateSystem class is a con�gured component that implements the functionality needed to convert
into and out of a speci�ed coordinate system. Internally, GMAT performs computations in a Mean of
J2000 Earth Equatorial coordinate system, centered at one of the celestial bodies in the GMAT solar system
(i.e. the Sun, a planet, or a moon) or at a barycenter or libration point. Each CoordinateSystem instance
provides methods to transform into and out of these J2000 coordinate systems. It contains the data necessary
for translation calculations, along with a member object pointer that is set to an AxisSystem instance for
coordinate systems whose principle axes are not parallel to the Mean of J2000 Earth Equatorial axes, or to
NULL for coordinate systems that are oriented parallel to these axes.

1The GMAT code base consists of a set of classes that provide the core functionality of the system, the �base� subsystem,
and classes that comprise the graphical user interface, the �gui� subsystem. All of the classes described in this document are
members of the base subsystem, with the exception of the recommendations for changes to the panels on the GUI.

Draft: Work in Progress
12.2. COORDINATE SYSTEM CLASSES 87

Figure 12.2: Top level AxisSystem Derived Classes

The AxisSystem class provides the methods needed to rotate the coordinate system into and out of the
Mean of J2000 Earth Equator frame. The AxisSystem is set for a given CoordinateSystem by setting the
axes member to an AxisSystem instance.

GMAT uses a late binding scheme to provide interconnections between objects used when modeling an
analysis problem. Individual components are con�gured from either the grapical user interface or a script
�le describing the objects that need to be modeled. Connections between these objects are de�ned using the
names of the objects, but the actual object instances used in the model are not set until the simulation is run.
Upon execution, the con�gured objects are copied into the analysis workspace, called the Sandbox, and the
connections between the con�gured objects are established immediately prior to the run of the simulation.
The Initialize method in the CoordinateSystem class implements this late binding for the connection between
the coordinate system instance and the related SpacePoints.

12.2.2 The AxisSystem Class Hierarchy
GMAT is capable of supporting numerous coordinate system orientations. These orientations are de�ned
through the AxisSystem class; each unique axis orientation is implemented as a separate class derived from
the AxisSystem base class. Figure 12.2 shows an overview of the AxisSystem class hierarchy, and identi�es
the top level classes in this hierarchy.

The orientations of the coordinate systems in GMAT fall into two broad categories: axes that change
orientation over time, and those that remain �xed in orientation. The latter category requires computation
of the rotation matrices one time, at initialization, in order to perform the rotations into and out of the
coordinate system. Figure 12.3 shows the six inertial axis systems supported in GMAT. These systems
support equatorial and ecliptic versions of Mean of J2000, Mean of Epoch, and True of Epoch transformations.

Coordinate systems that are not �xed in orientation over time are derived from the DynamicAxes class,
as is shown in Figure 12.4. These coordinate systems include equatorial and ecliptic versions of the mean
of date and true of date axes, along with axes that evolve with the polar motion of the body's rotational
axis (implemented in the EquatorAxes class) and axes that are �xed on the body's prime meridian (the
BodyFixedAxes class). All of these classes require recomputation of the orientation of the axes as the epoch
of the model evolves.

One additional class in Figure 12.4 bears discussion here. GMAT supports numerous coordinate systems
that reference bodies that are not celestial objects � speci�cally coordinate systems that use Lagrange points,

Draft: Work in Progress
88 CHAPTER 12. COORDINATE SYSTEMS

Figure 12.3: Inertial Axis Classes

Figure 12.4: Dynamic Axis Classes

Draft: Work in Progress
12.2. COORDINATE SYSTEM CLASSES 89

barycenters, spacecraft, and formations to de�ne the coordinate origins and axes. These coordinate systems
use the ObjectReferencedAxes class to construct the coordinate basis and rotation matrices. The GMAT
Mathematical Speci�cations[MathSpec] provide detailed descriptions of how this class operates.

12.2.3 CoordinateSystem and AxisSystem Collaboration
The GMAT Mathematical Speci�cation[MathSpec] includes a �ow chart that describes the process of trans-
forming between coordinate systems. This process is performed in the GMAT code using the Coordinate-
Converter class and the public methods of the CoordinateSystem class. When GMAT needs a conversion
from one coordinate system to another, the method CoordinateConverter::Convert is called with the
epoch, input state, input coordinate system, output state, and output coordinate system as parameters.
The converted state vector is stored in the output state parameter.

The Convert method calls the conversion method CoordinateSystem::ToMJ2000Eq on the input coordi-
nate system, followed by CoordinateSystem::FromMJ2000Eq on the output coordinate system. ToMJ2000Eq
calls the AxisSystem::RotateToMJ2000Eqmethod followed by the CoordinateSystem::TranslateToMJ2000Eq
method, converting the input state from the input coordinate system into Mean of J2000 Equatorial coor-
dinates. Similarly, FromMJ2000Eq calls the CoordinateSystem::TranslateFromMJ2000Eq method and then
the AxisSystem::RotateFromMJ2000Eq method, converting the intermediate state from Mean of J2000
Equatorial coordinates into the output coordinate system, completing the transformation from the input
coordinate system to the output coordinate system. Each of the conversion routines takes a SpacePoint
pointer as the last parameter in the call. This parameter identi�es the J2000 coordinate system origin to
the conversion routine. If the pointer is NULL, the origin is set to the Earth.

The following paragraphs provide programmatic samples of these conversions.

12.2.3.1 Code Snippets for a Conversion
Figure 12.5, generalized from the GMAT mathematical speci�cation, illustrates the procedure used to im-
plement a transformation from one coordinate system to another. The following paragraphs provide code
snippets with the corresponding function arguments for this process.

When GMAT needs to convert from one coordinate system to another, this method is called:

if (!coordCvt->Convert(epoch, instate, inputCS, outstate, outputCS))
throw CoordinateSystemException("Conversion from " +

inputCS->GetName() + " to " + outputCS->GetName() + " failed.");

This method invokes the calls listed above, like this:

// Code in CoordinateConverter::Convert
if (!inputCS->ToMJ2000Eq(epoch, instate, internalState, J2000Body))

throw CoordinateSystemException("Conversion to MJ2000 failed for " +
inputCS->GetName());

if (!outputCS->FromMJ2000Eq(epoch, internalState, outState, J2000Body))
throw CoordinateSystemException("Conversion from MJ2000 failed for " +

outputCS->GetName());

The conversion code from the input state to Mean of J2000 Equatorial Coordinates is accomplished using
the calls

// Code in CoordinateSystem::ToMJ2000Eq
if (axes) // axes == NULL for MJ2000Eq orientations

if (!axes->RotateToMJ2000Eq(epoch, instate, internalState, J2000Body))
throw CoordinateSystemException("Rotation to MJ2000 failed for " +

Draft: Work in Progress
90 CHAPTER 12. COORDINATE SYSTEMS

Figure 12.5: GMAT Procedure for a Generic Coordinate Transformation

Draft: Work in Progress
12.3. CONFIGURING COORDINATE SYSTEMS 91

instanceName);
else // Set the intermediate state to the input state

internalState = instate;

if (!TranslateToMJ2000Eq(epoch, internalstate, internalState, J2000Body))
throw CoordinateSystemException("Translation to MJ2000 failed for " +

instanceName);

and the conversion from Mean of J2000 Equatorial Coordinates to the output state is performed using
these calls:

// Code in CoordinateSystem::FromMJ2000Eq
if (!TranslateFromMJ2000Eq(epoch, internalstate, internalState, J2000Body))

throw CoordinateSystemException("Translation from MJ2000 failed for " +
instanceName);

if (axes) // axes == NULL for MJ2000Eq orientations
if (!axes->RotateFromMJ2000Eq(epoch, internalState, outstate, J2000Body))

throw CoordinateSystemException("Rotation from MJ2000 failed for " +
instanceName);

else // Set the output state to the intermediate state
outstate = internalState;

12.2.4 The SpacePoint Class
In general, coordinate systems are de�ned in reference to locations and directions in space. Many of the
coordinate systems used in GMAT have the direction �xed based on an external reference � for example, the
MJ2000Eq system has the z-axis pointed along the Earth's rotation axis at the J2000 epoch and the x-axis
aligned with the vernal equinox at the same epoch. GMAT also supports coordinate systems constructed in
reference to objects internal to the GMAT � typically a planet, the Sun, a moon, or a spacecraft can be used,
as can special points in space like Lagrange points or the barycenter of a multi-body system. The coordinate
system classes need to be able to access position and velocity data about these objects in a generic fashion.
GMAT has a class, SpacePoint, that provides this access. SpacePoint is the base class for all of the objects
that model location data in the solar system, as is shown in Figure 12.6. The SpacePoint class is described
in more detail in Chapter 11.

12.3 Con�guring Coordinate Systems
12.3.1 Scripting a Coordinate System
The script commands used to create a coordinate system object in GMAT are de�ned in the GMAT Math-
ematical Speci�cations[MathSpec]. Coordinate System scripting is performed using the following lines of
script:

Create CoordinateSystem csName
GMAT csName.Origin = <SpacePoint name>;
GMAT csName.Axes = <Axis type>;
GMAT csName.Primary = <Primary SpacePoint name, if needed>;
GMAT csName.Secondary = <Secondary SpacePoint name, if needed>;
GMAT csName.Epoch.<Format> = <Epoch data, if needed>;

% Only two of these three can exist for a given coordinate system;

Draft: Work in Progress
92 CHAPTER 12. COORDINATE SYSTEMS

Figure 12.6: The SpacePoint Class Hierarchy

% see the coordinate system table for more information
GMAT csName.XAxis = <\pmR, \pmV, or \pmN>;
GMAT csName.YAxis = <\pmR, \pmV, or \pmN>;
GMAT csName.ZAxis = <\pmR, \pmV, or \pmN>;

The �elds in angle brackets are used to set the parameters that de�ne the coordinate system. Table 12.1
provides a brief description of these �elds; more details are available in [MathSpec].

In the following paragraphs, the interactions between the script interpreter subsystem and the coordinate
system classes are described.

12.3.1.1 Script Interpreter Actions

In GMAT, the ScriptInterpreter reads each line of script and sets up the corresponding objects. The lines
of script above map to calls made in the ScriptInterpreter code, as described in the following text.

The Create line causes the ScriptInterpreter to call the CoordinateSystemFactory and requests a Coor-
dinateSystem instance:

// In the Interpreter subsystem
GmatBase *csInstance = moderator->CreateCoordinateSystem("CoordinateSystem", "csName");

The resulting coordinate system is registered with the con�guration manager.
The Origin line sets the originName parameter on this instance:

// First determine that the parm is a string
Gmat::ParameterType type = csInstance->GetParameterType({}``Origin'');

// Here type is a string, so this is called:
csInstance->SetStringParameter({}``Origin'', <SpacePoint name>);

The Axes line creates an instance of the AxisSystem and passes it to the coordinate system:

Draft: Work in Progress
12.3. CONFIGURING COORDINATE SYSTEMS 93

Table 12.1: Coordinate System Parameters

Parameter Required/ Op-
tional

Allowed Values Description

Origin Required
Any Named
SpacePoint

De�nes the location of the coordinate sys-
tem origin.

Axes Required
Equator, MJ2000Ec,
MJ2000Eq, TOEEq,
MOEEq, TODEq,
MODEq, TOEEc,
MOEEc, TODEc,
MODEc, Fixed,
ObjectRefernced

De�nes the orientation of the coordinate
axes in space.

Primary Optional
Any Named
SpacePoint

De�nes the primary body used to ori-
ent axes for systems that need a primary
body.

Secondary Optional
Any Named
SpacePoint

De�nes the secondary body used to orient
axes for systems that need a secondary
body.

Epoch Optional Any GMAT Epoch Sets the reference epoch for systems that
need a reference epoch.

XAxis Optional ±R,±V,±N Used for ObjectReferences axes only; two
of the three axes are set, and one must
reference ±N .

YAxis Optional ±R,±V,±N Used for ObjectReferences axes only; two
of the three axes are set, and one must
reference ±N .

ZAxis Optional ±R,±V,±N Used for ObjectReferences axes only; two
of the three axes are set, and one must
reference ±N .

Draft: Work in Progress
94 CHAPTER 12. COORDINATE SYSTEMS

// First determine that the parm is an internal object
Gmat::ParameterType type = csInstance->GetParameterType({}``Axes'');

// Here type is an object, so this is called:
GmatBase {*}axesInstance = moderator->CreateAxisSystem(<Axis type>, {}``'');

// Then the object is set on the coordinate system
csInstance->SetRefObject(axesInstance);

The Primary line sets the primary body on the AxisSystem instance. This is done by passing the data
through the CoordinateSystem object into the AxisSystem object:

// First determine that the parm is a string
Gmat::ParameterType type = csInstance->GetParameterType({}``Primary'');

// Pass the string to the coordinate system
csInstance->SetStringParameter({}``Primary'', <SpacePoint name>);

...

// In CoordinateSystem, this parameter is passed to the AxisSystem:
axes->SetStringParameter({}``Primary'', <SpacePoint name>);

The Secondary line is treated similarly to the primary line:

// First determine that the parm is a string
Gmat::ParameterType type = csInstance->GetParameterType({}``Secondary'');

// Pass the string to the coordinate system
csInstance->SetStringParameter({}``Secondary'', <SpacePoint name>);

...

// In CoordinateSystem, this parameter is passed to the AxisSystem:
axes->SetStringParameter({}``Secondary'', <SpacePoint name>);

The Epoch line is handled like in the Spacecraft object, and the XAxis, YAxis and ZAxis lines are treated
as string inputs, like the Primary and Secondary lines, above.

12.3.2 Default Coordinate Systems
GMAT de�nes several coordinate systems by default when it is initialized. These systems are listed in Table
12.2.

12.4 Coordinate System Integration
Sections 12.2 and 12.3 describe the internal workings of the GMAT coordinate systems, but do not explain
how the coordinate system code interacts with the rest of GMAT. This section outlines that information.

Draft: Work in Progress
12.4. COORDINATE SYSTEM INTEGRATION 95

Table 12.2: Default Coordinate Systems de�ned in GMAT
Name Origin Axis System Comments
EarthMJ2000Eq Earth MJ2000 Earth Equator The default coordinate system for

GMAT
EarthMJ2000Ec Earth MJ2000 Ecliptic
EarthFixed Earth Body Fixed The Earth �xed system is used

by the gravity model for full �eld
modeling

BodyFixed Other celestial
bodies

Body Fixed Fixed systems used by the grav-
ity model for full �eld modeling
at other bodies

12.4.1 General Considerations
GMAT uses coordinate systems in several general areas: for the input of initial state data, internally in the
impulsive and �nite burn code, force models and propagation code, in the calculation of parameters used to
evaluate the behavior of the model being run, and in the graphical user interface (GUI) to display data as
viewed from a coordinate system based perspective.

12.4.2 Creation and Con�guration
12.4.2.1 Coordinate System Creation
Coordinate systems are created through a series of interactions between the GMAT interpreters, the Mod-
erator, and the Factory system. Figure 12.7 shows the sequence followed by the ScriptInterpreter when a
coordinate system is con�gured from a script. The procedure is similar when the GUI con�gures a coordinate
system, with one exception. The ScriptInterpreter translates a script �le a line at a time, so it needs to look
up the CoordinateSystem object each time it is referenced in the script. The GUI con�gures the coordinate
system from a single panel, so the coordinate system object does not need to be found each time a parameter
is accessed.

12.4.2.2 Startup Considerations
When a user starts GMAT, the executable program creates a singleton instance of the Moderator. The
Moderator is the core control module in GMAT; it manages the creation and deletion of resources, the
interfaces between the core components of the system and the external interfaces (including the GUI and
the scripting engines), and the execution of GMAT simulations. When the Moderator is created, it creates
a variety of default resources, including the default factories used to create the objects in a simulation. The
factories that get created include the CoordinateSystemFactory.

After it has created the factories and constructed the default solar system, the Moderator creates the
default coordinate systems listed in Table 12.2, following a procedure like the one shown in Figure 12.7. These
coordinate systems are registered with the Con�guration Manager using the names in the table. Users can
use these coordinate systems without any taking any additional con�guration actions.

12.4.3 Sandbox Initialization
When a user runs a mission sequence, the Moderator takes the following sequence of actions 2:

1. Send the current SolarSystem to the Sandbox for cloning
2The description here references a Sandbox for the run. The Moderator can be con�gured to manage a collection of

Sandboxes; in that case, the actions described here are applied to the current Sandbox from that collection.

Draft: Work in Progress
96 CHAPTER 12. COORDINATE SYSTEMS

Figure 12.7: Coordinate System Creation and Con�guration Sequence

2. Load the con�gured objects one at a time into the Sandbox. These objects are cloned 3 into the
Sandbox.

3. The Sandbox is initialized.

4. The Mission is executed.

The critical piece for successful execution of a GMAT mission is the third step. When the Sandbox is
initialized, the following actions are executed:

1. The local solar system object is set for all of the objects that need it.

2. Reference object pointers are set on objects that use them.

3. The objects are initialized.

4. Parameters are con�gured.

5. The command sequence is con�gured.

(a) The object table is passed to each command.
(b) The solar system is passed to each command.
(c) The command is initialized.

The coordinate system objects are fully initialized and ready for use by the end of the step 3. Commands
that use the coordinate system objects have the object associations set in step 5c.

12.4.4 Initial States
Users need to set the locations and initial motion of spacecraft, ground stations, and other physical entities
modeled in GMAT using a coordinate system that makes this data simple to specify. For this reason, GMAT
lets users select all or a portion of the coordinate system needed for these objects.

3The current build of GMAT does not fully implement cloning for the con�gured objects. This issue is being corrected.

Draft: Work in Progress
12.4. COORDINATE SYSTEM INTEGRATION 97

12.4.4.1 Spacecraft
The initial state for a spacecraft is expressed as an epoch and six numerical quantities representing the space-
craft's location and instantaneous motion. These quantities are typically expressed as either six Cartesian
elements � the x, y, and z components of the position and velocity, six Keplerian elements � the semimajor
axis, eccentricity, inclination, right ascension of the ascending node, argument of pariapsis, and the anomaly
in one of three forms (true, mean, or eccentric), or one of several other state representations. The element
representation depends on the coordinate system used. Some representations cannot be used with some co-
ordinate systems � for example, the Keplerian representation requires a gravitational parameter, µ = GM , in
order to calculate the elements, so coordinate systems that do not have a massive body at the origin cannot
be used for Keplerian elements. For these cases, GMAT reports an error if the element type is incompatible
with the coordinate system.

12.4.4.2 Ground Stations and Other Body Fixed Objects
Ground station objects and other objects connected to physical locations on a body are expressed in terms
of the latitude, longitude, and height above the mean ellipsoid for the body. The coordinate system used
for these objects is a body �xed coordinate system. Users can specify the central body when they con�gure
these objects. The body radius and �attening factor for that body are used to calculate the mean ellipsoid.
Latitude is the geodetic latitude of the location, and longitude is measured eastwards from the body's prime
meridian.

GMAT does not currently support ground stations or other body �xed objects. This section will be
updated when this support is added to the system.

12.4.5 Forces and Propagators
Internal states in GMAT are always stored in a Mean of J2000 Earth-Equator coordinate system. The origin
for this system is set to either a celestial body (i.e. the Sun, a planet, or a moon), a barycenter between
two or more bodies, or a Lagrange point. The propagation subsystem in GMAT allows the user to specify
this origin, but no other coordinate system parameters. Propagation is performed in the Mean of J2000
Earth-Equator frame located at the speci�ed origin.

Individual forces in the force model may require additional coordinate system transformations. These
transformations are described in the next section.

12.4.5.1 Coordinate Systems Used in the Forces
GMAT contains models for point mass and full �eld gravity from both a central body and other bodies,
atmospheric drag, solar radiation pressure, and thrust from thrusters during �nite maneuvers. Table 12.3
identi�es the coordinate system used for each force. Users set the point used as the origin for the force
model. This point is labeled ro in the table. Forces that require a central body reference that body as rcb in
the table. Users also specify the coordinate system used for �nite maneuvers. All other coordinate systems
are set up internally in the force model code, and managed by the constituent forces.

12.4.5.2 Transformations During Propagation
GMAT's propagators consist of a numerical integrator and an associated force model. Each force model is
a collection os individual forces that get added togehter to determine the net acceleration applied to the
object that is propagated. The preceding section de�ned the coordinate systems used by each of these forces.
Figure 12.8 shows the procedure that is followed each time the force model calculates the acceleration applied
to an object.

The force model calls each force in turn. As a force is called, it begins by transforming from the
internal Mean of J2000 equatorial coordinate system into the coordinate system required for that force. The
acceleration from the force is then calculated.

Draft: Work in Progress
98 CHAPTER 12. COORDINATE SYSTEMS

Table 12.3: Coordinate Systems Used by Individual Forces
Force Coordinate System Notes
Point Mass Gravity ro centered MJ2000

Earth Equator
Point mass forces use the default representations

Full Field Gravity rcb centered Body Fixed Full �eld models use the body �xed system to cal-
culate latitude and longitude data, and calculate
accelerations in the MJ2000 frame based on those
values.

Drag rcb centered MJ2000
Earth Equator

Drag forces set the atmosphere to rotate with the
associated body, so the reference frame remains
inertial (i.e. MJ2000 based).

Solar Radiation Pressure ro centered MJ2000
Earth Equator

Solar Radiation Pressure calculations are per-
formed in MJ2000 coordinates

Finite Maneuver Thrust Any De�ned Coordinate
System, user speci�ed

Finite maneuvers determine the thrust direction
based on the thrust vector associated with the en-
gines. The spacecraft are aligned with this coordi-
nate system. A future build will add an additional
transformation to allow speci�cation of the space-
craft's attitude in this frame.

Figure 12.8: Control Flow for Transformations During Propagation

Draft: Work in Progress
12.4. COORDINATE SYSTEM INTEGRATION 99

Figure 12.9: Calculating the Direction Used for Maneuvers

12.4.6 Maneuvers
The impulsive and �nite burn models are used to simulate thruster actions on a spacecraft. Maneuvers are
applied either as an impulsive delta-V or as an acceleration in the force model. In either case, the coordinate
system related operations in the maneuver object are the same: the basis vectors for the coordinate system
are calculated in the MJ2000 frame, the magnitude of the change in the velocity is calculated for the maneuver
(resulting in a delta-V magnitude for impulsive maneuvers, or the time rate of change of velocity for �nite
maneuvers), and the resultant is projected along the basis vectors using attitude data in the maneuver object.
Figure 12.9 illustrates this �ow.

12.4.7 Parameters
Many of the parameters that GMAT can calculate are computed based on the coordinate system of the
input data; in some cases this dependency uses the full coordinate system, and in other cases, it uses the
origin or central body of the coordinate system. The Parameter subsystem contains �ags for each parameter
taht are used to indicate the level of coordinate system information required for that parameter. These �ags
indicate if the parameter is speci�ed independently from the coordinate system, depends only on the origin
of a coordinate system, or depends on a fully speci�ed coordinate system.

12.4.8 Coordinate Systems and the GUI
12.4.8.1 OpenGL ViewPoints
The OpenGL visualization component in the �rst three GMAT builds set the Earth at the center of the display
view and allowed users to move their Earth-pointing viewpoint to di�erent locations. The incorporation
of coordinate systems into the code opens GMAT to a greatly expanded visualization capability in this
component. Users can set the viewing direction to point towards any SpacePoint or an o�set from that
direction. Users can also set the viewpoint location to either a point in space, to the origin of any de�ned
coordinate system, or to locations o�set from any speci�ed SpacePoints. The latter capability allows the
OpenGL view to follow the motion of the entities modeled in GMAT.

12.4.8.2 New Panels
GMAT needs a new GUI panel used to con�gure coordinate system objects.

12.4.8.3 Panel Changes
Several of the existing GUI panels in GMAT will change once the Coordinate System classes are functional.
Both the report �le and the X-Y plot components use parameter data to produce output. The con�guration
panels for these elements needs the ability to specify either the coordinate system or the origin for the calcu-
lated data that requires these elements. One way to add this capability to the GUI is shown in Figure 12.10.

Draft: Work in Progress
100 CHAPTER 12. COORDINATE SYSTEMS

Figure 12.10: The Updated Parameter Subpanel

As di�erent parameters are selected, the �Coordinate System� and �Coordinate Origin� comboboxes become
active or disabled (�grayed out�), depending on the needs of the selected parameter.

The propagator subsystem needs information about the global origin for the forces in a force model.
Figure 12.11 shows one way to add this data to the panel.

The OpenGL panel needs to be updated to allow con�guration of the capabilities described in Section
12.4.8.1. Users can use the settings on this panel to specify both the coordinate system used to plot the
mission data and the location and orientation of the viewpoint used to observe these data. In some cases,
the viewpoint will not be a �xed point in space � for example, users will be able to view a spacecraft's
environment in the simulation by specifying the location and orientation of the viewpoint relative to the
spacecraft in a spacecraft centered coordinate system, and thus observe how other objects move in relation
to that spacecraft.

12.5 Validation
In this section, several tables are presented that show the data for a single state in several di�erent coordinate
systems. GMAT tests will be run that transform between these systems and validates that the conversions
are in agreement with the data in the tables to an acceptable level of precision. The test data were generated
in Astrogator by GSFC, Code 595. This output should be in agreement with GMAT results to at least one
part in 1012. (Subject to change once tests are run � seems like a good value as a starting point.)

12.5.1 Tests for a LEO
Table 12.4 lists the expected state data for a spacecraft orbiting near the Earth.

Draft: Work in Progress
12.5. VALIDATION 101

Figure 12.11: Addition of the Propagation Origin

Table 12.4: Coordinate Conversions for an orbit near the Earth
A LEO State

Epoch: UTC Gregorian UTC Julian Ephemeris Time
1 Jan 2005 12:00:00.00 2453372 2453372.00074287

Coordinate System X Y Z Vx Vy Vz

Earth Centered Mean
J2000 Equator

15999.999999999998 0.0000000000000 0.0000000000000 0.0000000000000 3.8662018270519716 3.8662018270519711

Earth Centered Fixed 3100.7006422193112 15696.674760971226 7.54822029656669 -2.6485022470204602 0.5213224286561129 3.8663431768510996
Earth Centered Mean
Ecliptic of Date

15999.988100569937 19.513619701949061 0.0163246416692983 -0.0062037647908650 5.0850309969931660 2.0093417847447261

Earth Centered Mean
Ecliptic of J2000

15999.999999999998 0.0000000000000 0.0000000000000 0.0000000000000 5.0850575916827729 2.0092840576358051

Earth Centered Mean of
Date

15999.9881005699370 17.8969907643261870 7.7768465297859297 -0.0062037647908650 3.8661983573941092 3.8662003193814876

Draft: Work in Progress
102 CHAPTER 12. COORDINATE SYSTEMS

Table 12.5: Coordinate Conversions for an orbit near the Earth/Moon-Sun L2 Point
A L2 State

Epoch: UTC Gregorian UTC Julian Ephemeris Time
25 Sep 2003 16:22:47.94 2452908.18249931 2452908.18324218

Coordinate Sys-
tem

X Y Z Vx Vy Vz

Earth Centered Mean
J2000 Equator

1152413.9609139508 164482.90400985131 -270853.37069837836 -0.0237491328055502 0.5463496092937017 0.1896952705370667

Sun-Earth/Moon
Barycenter L1

2659568.8530356660 -467.97516783879695 -314259.10186388291 -0.0062197634008832 0.3610507604664427 -0.0425806711166933

Sun-Earth L2 -352659.29964214563 -0.0002161438986659 -313927.71991658572 0.0027515868356648 0.3488514802312706 -0.0432916179713184
Solar System Barycen-
ter Mean J2000 Earth
Equator

151524360.68432158 4848014.2434389694 1751879.7152567047 -1.6146582474186386 27.776726415749529 11.995657174332731

12.5.2 Tests for a Libration Point State
Table 12.5 lists the expected state data for a spacecraft �ying near the Earth-Sun.

12.5.3 Tests for an Earth-Trailing State
Table 12.6 lists the expected state data for a deep space object trailing behind the Earth.

12.6 Some Mathematical Details
This section will probably appear in some form in the mathematical speci�cations. I'm leaving
it here until I can con�rm that assumption.

A spatial coordinate system is fully speci�ed by de�ning the origin of the system and two orthogonal
directions. Given these pieces of data, space can be gridded into triplets of numbers that uniquely identify
each point. The purpose of this section is to provide some guidance into how to proceed with the de�nition
of the coordinate system axes once the origin and two directions are speci�ed.

12.6.1 De�ning the Coordinate Axes
The coordinate system axes are de�ned from the two orthogonal directions in the system speci�cation. These
directions are given two of the three labels X̂, Ŷ , and Ẑ. These labels are used to de�ne the corresponding
directions for the coordinate system. The third axis is calculated by taking the inner product of the other
two axes, using

X̂ = Ŷ × Ẑ

Ŷ = Ẑ × X̂

Ẑ = X̂ × Ŷ (12.1)

12.6.2 Setting Directions in GMAT
The principal directions for a coordinate system are set in GMAT by specifying a primary direction and a
secondary direction. The speci�ed secondary axis need not be orthogonal (i.e. perpendicular) to the primary

Draft: Work in Progress
12.6. SOME MATHEMATICAL DETAILS 103

Table 12.6: Coordinate Conversions for an Earth-Trailing state
An Earth-Trailing State

Epoch: UTC Gregorian UTC Julian Ephemeris Time
1 Jan 2012 00:00:00.00 2455927.5 2455927.50074287

Coordinate Sys-
tem

X Y Z Vx Vy Vz

Earth Centered Mean
J2000 Equator

18407337.2437560 146717552.364272 2436998.6080801622 -29.85775713588113 3.7988731566283533 -0.0883535323140749

Earth Centered Mean
Ecliptic of Date

18010745.506277718 135634904.81496251 -56121251.238084592 -29.8677194647804920 3.3629312165175098 -1.5921471032003145

Earth Centered Mean
Ecliptic of J2000

18407337.2437560 135580104.86024788 -56124988.196549937 -29.8577571358811300 3.4502529604822207 -1.5921677410083135

Solar System Barycen-
ter Mean J2000 Earth
Equator

-7095223.559007301 279535881.30854195 60015670.739229225 -59.6890476068945470 -0.969033406060170 -2.1549980100429815

Sun Centered Earth
Equator Mean J2000

-6610248.770514084 279718577.50517684 60095016.884433664 -59.6964420074725410 -0.9617072219755838 -2.1516618821901923

Venus Centered Fixed 234671807.87997022 -184530264.43020287 -49090196.384031780 87.7042809962516540 130.412316317457850 -3.652395853117925
Moon Centered Fixed -28218680.593746454 -133515637.46513638 -56782561.270103499 -325.9434285713376800 70.716401043687014 -2.3269361125638657
Moon Centered Inertial
Moon Equator

18009331.473252095 146686558.45310178 2386670.4083221816 -29.7707871076046790 2.8992895961634191 -0.4430059951218515

Jupiter Centered Iner-
tial Jupiter Equator

-562256455.23257434 -225513430.99244595 -25746106.471387718 -50.5813599808322610 -13.854862630504574 -0.5555336109134552

Mars Centered Inertial
Mars Equator

207783148.71266919 -43368297.655312374 13161295.341311477 -19.7427310285643220 35.2164929323613260 -21.767269119097524

Mars Centered Fixed 127577563.32704885 -169644368.24313599 13138473.444519326 -12016.3787728729480 -9003.4840556769759 -21.769072220711045

Draft: Work in Progress
104 CHAPTER 12. COORDINATE SYSTEMS

axis. Given a primary direction ~P and a secondary direction ~S, the primary axis is oriented along a unit
vector given by

P̂ =
~P∣∣∣~P
∣∣∣

(12.2)

The unit vector de�ning the secondary axis is constructed by projecting the secondary direction ~S into the
plane perpendicular to the primary direction, and unitizing the resulting vector. This is done by calculating

Ŝ =
~S −

(
~S · P̂

)
P̂

∣∣∣~S −
(

~S · P̂
)

P̂
∣∣∣

(12.3)

In general, two points are needed to specify a direction.

Draft: Work in Progress

Chapter 13

SpaceObjects: Spacecraft and
Formation Classes

Darrel J. Conway
Thinking Systems, Inc.

The Spacecraft and Formation classes used in GMAT are the core components studied when running the
system. Instances of these classes serve to model spacecraft state information as the model evolves. They
also serve as containers for hardware components used to extend the model to include �nite burn analysis,
contact calculations, spatial mass distributions, and full six degree of freedom modeling. The core elements
of this modeling are presented in this chapter. The hardware extensions are documented in Chapter 14.

13.1 Component Overview
The central nature of Spacecraft and Formation objects in GMAT's mission model makes the design of the
supported features of these classes potentially quite complex. The state data and related object properties
required for these objects must meet numerous requirements, including all of the following:

1. Supply State information to force model

• Origin dependent data, MJ2000 Earth Equator orientation
• Cartesian states
• �Future� Equinoctial states

2. Support input representations

• Convert between di�erent representations
• Preserve accuracy of input data

3. Support coordinate systems

• Support internal MJ2000 Cartesian system for propagation
• Allow state inputs in di�erent systems
• Show state in di�erent systems on demand

4. Support time systems

• TAI ModJulian based internal time system

105

Draft: Work in Progress
106 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

• Support ModJulian
• Support Gregorian
• Convert all time systems

5. Support mass and ballistic properties

• Basic spacecraft mass
• Cd, Cr, Areas
• Mass in tanks
• �Future� Mass depletion from maneuvers
• �Future� Moments of Inertia

6. Support tanks and thrusters

• Add and remove tanks and thrusters
• �Future� Deplete mass during �nite burn
• �Future, partially implemented� Model burn direction based on thruster orientations (BCS based)

7. GUI

• Provide epoch information
� Epoch representation string
� Epoch in that representation
� Supply di�erent representation on request
� Preserve precision of input epoch data

• Provide state information
� State type string
� State in that representation
� Provide units and labels for state elements
� Convert to di�erent representations
� Preserve precision of input state data

• Provide support for �nite maneuvers

8. Scripting

• Support all GUI functionality from scripting
• Provide element by element manipulations of state data
• Allow element entry for data not in the current state type without forcing a state type change

9. Provide Range Checking and Validation for all Editable Data

10. �Future� Support attitude

• Allow attitude input
• Convert attitude states

11. �Future� Support sensors

• Add and remove
• Conical modeling

Draft: Work in Progress
13.2. CLASSES USED FOR SPACECRAFT AND FORMATIONS 107

• Masking
• Contact information based on sensor pointing (BCS based)

GMAT de�nes a base class, SpaceObject, for the common elements shared by spacecraft and formations.
The primary feature of the SpaceObject class is that it provides the data structures and processes necessary
for propagation using GMAT's numerical integrators and force models. Classes are derived from this base
to capture the unique characteristics of spacecraft and formations. Additional components that interface
with the propagation subsystem should be added to GMAT in this hierarchy; the propagation subsystem is
designed to work at the SpaceObject level.

The SpaceObject subsystem uses three categories of helper classes: PropStates, Converters, and Hard-
ware. In one sense, the SpaceObject classes can be viewed as containers supporting the features needed to
model objects in the solar system that evolve over time through numerical integration in GMAT.

The core data needed for propagation is contained in the PropState helper class. Each SpaceObject
has one PropState instance used to manage the data directly manipulated by the numerical integrators.
The PropState manages the core epoch and state data used by the propagation subsystem to model the
SpaceObjects as they evolve through time. Details of the PropState class are given in Section 13.2.3.

Each SpaceObject includes components used to take the data in the PropState and convert it into a
format appropriate for viewing and user interaction. The conversion subsystem described in Section 13.5
provides the utilities needed to convert epoch data, coordinate systems, and state element representations.
The conversion routines needed to meet the requirements are contained in a triad of conversion classes:
TimeConverter, CoordinateConverter, and RepresentationConverter, that share a common base that enforces
consistent interfaces into the conversion routines. These conversion routines interact with the state and epoch
data at the SpaceObject level on GMAT; therefore, conversions on a Formation object are performed using
identical calls to conversions for individual Spacecraft. In other words, the state or epoch data for a Formation
is transformed for all members of the Formation with a single call, and that call looks identical to the same
transformation when performed on a single spacecraft.

The spacecraft as modeled in GMAT is a fairly simple object, consisting of several key properties required
to model ballistics and solar radiation forces. The state complexities are managed in the SpaceObject base
class. Additional spacecraft hardware � fuel tanks, thrusters, and eventually sensors and other hardware
elements � are modeled as con�gurable hardware elements that are added as needed to Spacecraft objects.
Hardware elements that contribute to the spacecraft model are broken out into separate classes modeling
the speci�c attributes of those elements. Users con�gure fuel tanks and thrusters as entities that the space-
craft uses for �nite maneuvering. These elements include structures that allow location and orientation
con�guration in the Spacecraft's body coordinate system, so that detailed mass and moment data can be
calculated during the mission. A future release of GMAT will add support for attitude calculations and,
eventually, sensors, so that attitude based maneuvering, full six degree of freedom modeling, and detailed
contact modeling can be incorporated into the system. These components are discussed in more detail in
Chapter 14.

The remainder of this chapter details the design of the components that implement the core SpaceObject
classes, Spacecraft and Formation. It includes the design speci�cation for the converters GMAT uses to
support these classes, along with a discussion of how these elements interact to provide the conversions
needed to meet the system requirements.

13.2 Classes Used for Spacecraft and Formations
Figure 13.1 shows the details of the classes derived from SpacePoint that are used when modeling spacecraft
and formations of spacecraft. The class hierarchy for the spacecraft subsystem consists of three core classes:
the SpaceObject class, which contains the common elements of the subsystem, the Spacecraft class, which
acts as the core component for all spacecraft modeling, and the Formation class, which collects spacecraft
and subformations into a single unit for modeling purposes. This subsystem also contains a helper class, the

Draft: Work in Progress
108 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

PropState, which encapsulates the data that evolves as the model is run, simplifying the interface to the
propagation subsystem. In addition, two of the hardware classes � Thruster and FuelTank � are shown in
the �gure.

13.2.1 Design Considerations
The central role of the Spacecraft and Formation SpaceObjects in GMAT's models drives several design
considerations related to the consistent display and use of these objects in the model. Before presenting the
design of the classes used for these objects, several of the considerations that went into this design will be
discussed.

13.2.1.1 Data Consistency Philosophy
The SpaceObject subsystem follows a convention that requires that the state data in the PropState always
stays correct with respect to the model. In other words, once some data in the state vector is set, changes to
other properties of the SpaceObject do not change the state with respect to the model. That means that if
the internal origin changes for a SpaceObject, the data in the state vector is translated to the new location,
and the velocity data is updated to re�ect the speed of the SpaceObject with respect to the new origin.
In order to change the state of a SpaceObject in GMAT's model, the actual state data must be changed.
Changing the coordinate system or origin does not change the position or velocity of the SpaceObject with
respect to other objects in the space environment; instead, it changes the values viewed for the SpaceObject
by updating the viewed data in the new coordinate system. The epoch also remains unchanged upon change
of the coordinate system, the representation, or elements of the state vector.

Epoch data is simpler (because it is independent of location in the space environment), but follows
the same philosophy. Internally the epoch data is stored in the TAI modi�ed Julian time system. Users
can view the epoch data in any of GMAT's de�ned time systems. Changing the time system does not
change the internal epoch data, only the way that data is presented. Epoch data is changes by directly
updating the epoch. Upon change of epoch, the state of the spacecraft remains unchanged with respect to
the SpaceObject's origin. However, a side e�ect of changing the epoch on a SpaceObject is that the locations
of the objects in the solar system may shift, so the location of the SpaceObject with respect to other solar
system objects may be di�erent.

13.2.1.2 Data Presented to the User
Each SpaceObject includes data members used to track the current default views of the data. The epochType
member is used to store the current format for viewing the epoch data. State data requires two components
to fully de�ne the view of the state data: the coordinateType member tracks the coordinate system used to
view the state data, and the stateType member the representation for that view of the state data. These
three members � epochType, coordinateType, and stateType � de�ne the views used when a SpaceObject
is written to a �le, displayed on a GUI panel, or accessed as strings for other purposes.

Access to the state and epoch data as Real values returns the internal data elements: the epoch is
returned as a TAI modi�ed Julian value, and the state data is returned as Cartesian Mean-of-J2000 Earth
equatorial data, referenced to the origin speci�ed for the SpaceObject. The SpaceObjects provide methods
that retrieve the data in other formats as well; the values described here are those returned using the default
GetRealParameter methods overridden from the GmatBase class.

State data can be read or written either element by element or as a vector of state data. The former
approach is taken by the Script Interpreter when setting a spacecraft's state as expressed element-by-element
in the script, like shown here:

Create Spacecraft sat;
sat.StateType = Keplerian;
sat.SMA = 42165.0;

Draft: Work in Progress
13.2. CLASSES USED FOR SPACECRAFT AND FORMATIONS 109

Figure 13.1: Class Structure for Spacecraft and Formations

Draft: Work in Progress
110 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

sat.ECC = 0.0011;
sat.INC = 0.25;
sat.RAAN = 312.0;
sat.AOP = 90.0;
sat.TA = 270.0;

The GUI works with the state data as a single entity, rather than element-by-element. Accordingly, the panel
that displays spacecraft state data accesses this data with a single call that returns the full state data1.

Spacecraft states can be displayed in many di�erent representations. Rather than code text descriptions
for the di�erent components of each representation into the representation converter, each representation
includes structures to provide the labels and units used for the components. The SpaceObjects provide
methods to retrieve these values.

Some state representations have optional settings for speci�c elements. For example, the Keplerian
representation can specify the anomaly in one of several forms: elliptical states can specify a true anomaly,
eccentric anomaly, or mean anomaly, while hyperbolic orbits use either the hyperbolic anomaly or a mean
anomaly de�ned o� of the hyperbolic anomaly. Representations that support this type of option also provide
a method, SetOption(), to set the option. SpaceObjects provide methods to access these methods as well,
so that the representation options can be set through calls to the SpaceObject.

13.2.2 The SpaceObject Class
GMAT's force model constructs a state vector that is manipulated by the system's numerical integrators
to advance the state vector through time, as described in Chapter 20. The core building block for the
construction of this state vector is the SpaceObject, a class used in GMAT as the base class for Spacecraft
and Formations2, as shown in the class diagram, Figure 13.1.

The SpaceObject class supports all operations and data elements that Spacecraft and Formations share
in common. In particular, the vector used by the propagators to model evolution over time is encapsulated
in the SpaceObject class. Conversions that involve the data in this vector are performed at the SpaceObject
level. The SpaceObject class maintains pointers to the elements that are necessary for these conversions.

SpaceObject instances also act as containers for several helper classes, responsible for performing coor-
dinate system conversions, state transformations between di�erent state representations, and time system
conversions that allow the object's epoch information to be presented to users in common time systems,
described in Section 13.5. The SpaceObject class implements several methods that call those components
to supply requested data. The returned data from these calls is always an std::string or StringArray. The
SpaceObject class manages the underlying Real data internally, and uses these as checkpoints to manage the
precision of the output, to validate that the data is consistent, and to ensure that all data presented to the
users is consistent with the internal data structures in the SpaceObject.

Class Attributes

• PropState state: The container for the raw state and epoch data that gets propagated. Details of
the PropState class are provided in Section 13.2.3.

• bool isManeuvering: A �ag used to indicate if there is a �nite burn active for any of the members
of the SpaceObject.

1A future release of GMAT will provide a scripting option to set the full state in a single script line, using the format

Create Spacecraft sat;
sat.StateType = Keplerian;
sat.State = [42165.0, 0.0011, 0.25, 312.0, 90.0, 270.0];

2A future release will include the State Transition Matrix (STM) in the SpaceObject class hierarchy.

Draft: Work in Progress
13.2. CLASSES USED FOR SPACECRAFT AND FORMATIONS 111

• std::string originName: The name of the SpacePoint that is the origin of the data contained in the
SpaceObject's PropState.

• SpacePoint *origin: A pointer to the SpacePoint that is the origin of the data in the state.

• bool parmsChanged: A �ag used to indicate if the size or data contained in the PropState has
changed, so that consumers of those data can perform updates.

• SpacePoint *origin: The origin used for the state data.

• CoordinateSystem *baseCoordinates: The coordinate system used for the state data. This co-
ordinate system is a Mean-of-J2000 Earth-Equator system, with the origin set to the SpaceObject's
origin.

• std::string epochType: Text descriptor for the current epoch type used for display.

• TimeConverter timeConverter: The time converter used by this SpaceObject.

• �Future� TimeBase* baseTimeSystem: The time system matching the epochType.

• std::string coordinateType: Text descriptor for the current coordinate system used for display.

• CoordinateConverter coordConverter: The coordinate system converter used by this SpaceOb-
ject.

• CoordinateSystem* baseCoordinates: The coordinate system associated with the SpaceObject's
PropState.

• CoordinateSystem* viewCoordinates: The coordinate system associated with the SpaceObject's
coordinateType, used for display.

• std::string stateType: Text descriptor for the current state representation used for display.

• RepresentationConverter repConverter: The representation converter used by this SpaceObject.

• �Future� Representation* baseRepresentation: The representation used for display.

• std::string textEpoch: The most recently accessed string version of the epoch. This string is only
updated if the epoch �eld is accessed as a string using GetEpochString(), and the epoch or epoch type
has changed since the last access.

• StringArray textState: The most recently accessed string version of the state. This string array is
only updated if the state is accessed as a string array using GetStateString(), and the coordinate type
or representation has changed since the last access.

Methods

• PropState &GetState(): Returns the internal PropState.

• Real GetEpoch(): Returns the TAI modi�ed Julian epoch of the SpaceObject, obtained from the
PropState.

• Real SetEpoch(Real ep): Sets the SpaceObject's epoch to a new value. The input parameter is the
new TAI epoch. This mathod passes the new epoch into the PropState for storage.

• bool IsManeuvering(): Returns a �ag indicating if a �nite burn is currently active for the SpaceOb-
ject.

Draft: Work in Progress
112 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

• void IsManeuvering(bool mnvrFlag): Sets the �ag indicating the presence of a �nite burn.

• bool ParametersHaveChanged(): Returns a �ag indicating that the state data has been changed
outside of the propagation subsystem, and therefore the states need to be refreshed.

• void ParametersHaveChanged(bool �ag): Method used to indicate that an external change was
made, and therefore states should be refreshed before propagating.

• std::string GetOriginName(): Returns the name of the SpacePoint used as the origin of the state
data.

• void SetOriginName(const std::string &cbName): Sets the name of the origin used for the state
data.

• void SetOrigin(SpacePoint *cb): Sets the SpacePoint corresponding to the origin of the state
vector. The SpacePoint passed in the parameter cb is the new origin, and gets set on the base
coordinate system as its origin.

• Rvector6 GetMJ2000State(A1Mjd &atTime): Returns the Cartesian state relative to the SpaceOb-
ject's J2000 body3.

• Rvector3 GetMJ2000Position(A1Mjd &atTime): Returns the Cartesian position relative to the
SpaceObject's J2000 body.

• Rvector3 GetMJ2000Velocity(A1Mjd &atTime): Returns the Cartesian velocity relative to the
SpaceObject's J2000 body.

• bool SetCoordSystem(CoordinateSystem* coordsys): Sets the viewCoordinates member to the
input coordinate system.

• std::string GetEpochString(std::string toTimeType): Returns the current epoch in string form,
in the format in the toTimeType input. If toTimeType is an empty string, epochType is used as the
format for the output.

• StringArray GetStateString(std::string toType, std::string toCoords, CoordinateSystem*
toCS): Returns the SpaceObject state in the representation speci�ed by toType, in the coordinate
system set by toCoords, using the internal coordinate converter and the input coordinate system, toCS.
If toCS is NULL, the coordinate converter locates the required coordinate system. If, in addition,
toCoords is an empty string, viewCoordinates is used for the output coordinate system. If the toType
is also an empty string, the baseRepresentation is used.

• bool SetEpochFromString(std::string epochString, std::string timeType): Sets the epoch in
the PropState using the input epochString, which is formatted using the input timeType.

• bool SetStateFromString(StringArray stateString, std::string fromType, std::string from-
Coords, CoordinateSystem* fromCS): Sets the state in the PropState using the data in the
stateString array, which has the representation speci�ed in the fromType string in coordinate system
fromCoords, which has an instance in the fromCS input.

• StringArray GetStateLabels(): Returns a string array containing the labels identifying the state
elements.

• StringArray GetStateUnits(): Returns a string array containing the units for the state elements.

• void Synchronize(): Method used to �ll the textEpoch and textState from the data in the PropState.
3The current GetMJ2000 methods take an a.1 epoch as the epoch for the calculation. A future release will change this call

to use TAI epochs.

Draft: Work in Progress
13.3. THE SPACECRAFT CLASS 113

13.2.3 The PropState Class
All SpaceObjects contain a member PropState element that is designed to encapsulate all data needed to
propagate the SpaceObject. This member class is used to provide the single state vector propagated as the
core component seen by GMAT's propagators. The PropState objects can contain data for a single spacecraft,
multiple spacecraft (typically �own in a Formation), and related mass depletion and state transition matrix
data. The propagator subsystem ensures that these data are treated appropriately during propagation.

Each PropState instance de�ned the following data members and methods:

Class Attributes

• Real epoch: The current epoch for the state. This value is a TAI modi�ed Julian value, and is used
in the force model to specify the epoch for force evaluations.

• Real* state: The state vector that gets propagated.

• Integer dimension: The total number of elements in the state vector.

Methods

• Real &operator[](const Integer el): Provides element by element access to the state vector, so
that the components can be set using the same syntax as is used to set C++ array elements.

• Real operator[](const Integer el) const: Provides element by element access to the state vector,
so that the components can be read using the same syntax as is used to read C++ array elements.

• void SetSize(const Integer size): Resizes the state vector. This method copies the current state
data into the resized vector once the new vector has been allocated.

• const Integer GetSize() const: Returns the current size of the state vector.

• Real *GetState(): Returns the state vector. The returned vector is the internal Cartesian state used
by the propagators. The state data is in Mean-of-J2000 Earth-Equatorial coordinates, referenced to
the SpaceObject's origin.

• bool SetState(Real *data, Integer size): Sets the state vector to match the input vector. If the
size parameter is less than or equal to the dimension of the state vector, the data vector is copied
into the state vector, �lling from the start until the indicated number of elements is �lled. If size is
greater than the PropState dimension, the method returns false. The input state is in Mean-of-J2000
Earth-Equatorial coordinates, referenced to the SpaceObject's origin.

• Real GetEpoch() const: Returns the value of the epoch data member. The returned value is a TAI
modi�ed Julian value.

• Real SetEpoch(const Real ep): Sets the value of the epoch data member. The input value is a
TAI modi�ed Julian value.

13.3 The Spacecraft Class
One key component that supplies PropState data to GMAT is the Spacecraft class, used to model satellites
in the mission control sequence. Each satellite studied in the mission has a corresponding Spacecraft object,
con�gured to simulate the behavior of that satellite. The Spacecraft contains core data elements necessary
to model the physical characteristics of the satellite, along with the inherited SpaceObject properties that
form the core state representations used for propagation.

Draft: Work in Progress
114 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

In GMAT, the Spacecraft model allows for the addition of new satellite components that model speci�c
hardware elements. The current implementation supports fuel tanks and thrusters for use when modeling
�nite maneuvers. The base class for the hardware subsystem was designed to be �exible, incorporating
data elements designed to model the location and orientation of the hardware relative to a satellite body
coordinate system. The orientation data is used in GMAT to set the thruster direction during �nite burns.
Once the thrust direction has been determined, it it rotated based on the satellite's attitude to determine
the thrust direction in the propagation frame, so that the maneuver acceleration can be incorporated into
the force model. This modular hardware incorporation is also the �rst step towards incorporating moments
of inertia into the model, so that full six degree of freedom modeling can be performed in GMAT. Additional
details of the hardware model are provided in Chapter 14.

13.3.1 Internal Spacecraft Members
Spacecraft objects are SpaceObjects, so they contain all of the data structures associated with SpaceObjects
described above. They manage a StringArray that contains the current state as expressed in the current
state representation. This array typically contains the state as seen on the GUI or in the script �le that
con�gured the Spacecraft; the data in this array is only updated when needed for display purposes.

The Spacecraft class contains data members controlling the core ballistics of the object. Mass is handled
as a core Spacecraft mass plus all masses associated with the hardware attached to the Spacecraft. The
force model accumulates the mass into a total mass used in the acceleration calculations. Areas and force
coe�cients are included in the Spacecraft model for drag and solar radiation pressure calculations.

13.3.2 Spacecraft Members
The Spacecraft class provides data memebers used to manage the ballistic properties of the spacecraft.
Properties are de�ned to manage the spacecraft mass, incident areas for drag and solar radiation pressure
perturbations, associated coe�cients of drag and re�ectivity, and the structures needed to add hardware
elements to the core spacecraft objects. The members that provide this support are:

Class Attributes

• Real dragCoe�cient: The coe�cient of drag, Cd (see equation 21.3), used when calculating atmo-
spheric forces acting on the spacecraft.

• Real dragArea: The area of the spacecraft encountering the atmosphere.

• Real srpCoe�cient: The re�ectivity coe�cient, CR (see equation 21.2), used when calculating
accelerations from solar radiation pressure.

• Real srpArea: The area exposed to solar radiation, for the purposes of calculating the solar radiation
pressure force.

• Real dryMass: The total mass of the spacecraft, excluding fuel and other massive hardware elements.

• StringArray tankNames: Names of the fuel tanks that the spacecraft uses.

• StringArray thrusterNames: Names of the thrusters that the spacecraft uses.

• ObjectArray tanks: Array of fuel tanks on the spacecraft. Fuel tanks are added to spacecraft by
making local copies of de�ned tanks. Each fuel tank contributes fuel mass to the total mass of a
spacecraft. Fuel is depleted from the tanks during �nite maneuvers4.

4Mass depletion is scheduled for implementation during the summer of 2007.

Draft: Work in Progress
13.3. THE SPACECRAFT CLASS 115

• ObjectArray thrusters: Array of thrusters attached to the spacecraft. Thrusters are added to
spacecraft by making local copies of de�ned thrusters. Each thruster has a location and pointing
direction de�ned in teh spacecraft's body coordinate system. The applied thrust dir ection is computed
by rotating the thrust direction based on teh spacecraft's attitude5. The thruster mass should be
included in the dry mass of the spacecraft.

• Real totalMass: The total mass of the spacecraft, including fuel and other massive hardware elements.
This is a calculated parameter, available only as an output. Users cannot set the spacecraft's total
mass.

Methods The support for Spacecraft state and epoch access and manipulation is provided by the
SpaceObject base class. Access to the new data members described above is provided using the GmatBase
access methods described in Section 9.3. Generally speaking, the ballistic properties are accessed using
the GetRealParameter and SetRealParameter methods overrifdden from the base class. Hardware elements
are set by name, and con�gured on the Spacecraft by passing in pointers to con�gured hardware elements
which are then cloned inside the spacecraft tto make the local copy used when executing the mission control
sequence. Since most of the infrastructure for these steps is described elsewhere, the list of new methods
on the Spacecraft is rather sparse, consisting of notes describing Spacecraft speci�c details implemented for
these core methods:

• virtual Real GetRealParameter(const Integer id) const: Returns the real parameters listed in
the data member section. Of particular interest here is the treatment of the mass parameter. Requests
can be made for either the dry mass of the spacecraft or the total mass of the spacecraft. When the
total mass is requested, the returned value is the output of the UpdateTotalMass() method described
below.

• virtual bool TakeAction(const std::string &action, const std::string &actionData = ""):
TakeAction in the Spacecraft class adds the following new actions to the object:

� SetupHardware: Examines the hardware on the spacecraft, and sets up internal linkages required
for this hardware. For example, each thruster reqires a pointer to a fuel tank; that connection is
con�gured by this action.

� RemoveHardware: Removes one or all hardware elements from the Spacecraft. If a name is
speci�ed for the hardware element, only that element is removed. If the actionData string is
empty, all hardware elements are removed.

� RemoveTank : Removes one or all fuel tanks from the Spacecraft. If a name is speci�ed for the
fuel tank, only that tank is removed. If the actionData string is empty, all fuel tanks are removed.

� RemoveThruster : Removes one or all thrusters from the Spacecraft. If a name is speci�ed for
the thruster, only that thruster is removed. If the actionData string is empty, all thrusters are
removed.

The Spacecraft Class includes the following protected methods used to maintain some of the internal
data structures, and to generate data needed for the public methods:

• Real UpdateTotalMass(): Updates the total mass by adding all hardware masses to the dry mass.

• Real UpdateTotalMass() const: Updates the total mass by adding all hardware masses to the dry
mass. The const version does not update the internal member, and therefore can be called by other
const methods.

5The current implementation uses either an inertial attitude or a velocity-normal-binormal attitude for this calculation.

Draft: Work in Progress
116 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

13.4 Formations
In GMAT, SpaceObjects can be grouped together and treated as a single entity, the Formation, which evolves
over time as a single state vector. Each Formation can contain Spacecraft, other Formations, or any other
SpaceObject de�ned in the system. Formations are modeled using instances of the Formation class, described
in this section.

Class Attributes

• StringArray componentNames: Names of the SpaceObjects in the formation.

• std::vector <SpaceObject *> components: Pointers to the formation members.

• Integer dimension: Size of the state vector used in propagation.

• UnsignedInt satCount: Number of SpaceObjects in the components vector.

Methods The Formation class de�nes the following methods, used to manage the objects in the For-
mation:

• virtual void BuildState(): Constructs the PropState for the Formation.

• virtual void UpdateElements(): Updates the member SpaceObjects using the data in the Forma-
tion PropState.

• virtual void UpdateState(): Updates the internal PropState data from the member SpaceObjects.

• virtual bool TakeAction(const std::string &action, const std::string &actionData = ""):TakeAction
in the Formation class adds two actions to the object:

� Clear : Calls ClearSpacecraftList() to remove all SpaceObjects from the Formation.
� Remove: Calls RemoveSpacecraft() with a speci�c SpaceObject name to remove that SpaceObject

from the Formation.

Formation also contains two protected methods that are used to pupport the public interfaces:

• bool ClearSpacecraftList(): Clears the list of SpaceObjects in the Formation. This method clears
both the list of SpaceObject names and the list of instance pointers.

• bool RemoveSpacecraft(const std::string &name): Removes a SpaceObject from the list of
Formation members. This method removes both the SpaceObject name from the componentNames
member and the instance pointer from the components list.

13.5 Conversion Classes
GMAT's Spacecraft and Formation models act as a data provider for state information that is fed into the
propagation system. Users interact with this aspect of the model by selecting the view of the data, spacecraft
by spacecraft, in one of many di�erent coordinate systems and state representations at a user speci�ed epoch.
On a coarse level, the views into the state data can be broken into three separate components: the time system
used to track the epoch for the spacecraft, the coordinate system that speci�es the origin and orientation of
coordinate axes de�ning the position and velocity of the spacecraft, and the representation used to express
this state data � a set of Cartesian or Keplerian elements, or some other representation based on the needs
of the user.

Draft: Work in Progress
13.5. CONVERSION CLASSES 117

Internally, these data are managed as Mean-of-J2000 Earth-Equatorial states, translated to the origin
speci�ed for the SpaceObject, in either the Cartesian or equinoctial representation6. Epoch data is stored
internally in international atomic time (TAI, Temps Atomique International), in a modi�ed Julian time
format measured in days from January 5, 1941 at 12:00:00.000.

The Conversion classes and the related base classes de�ning the interfaces for the conversion types are
designed to satisfy GMAT's extensibility requirements. Users can de�ne new coordinate systems as needed,
from either GMAT's graphical user interface or from a script �le. Representations and time systems are
more di�cult to add to the system because the underlying math and is more specialized to meet the needs
of the system. Users that need to add state representations or time systems not currently in GMAT should
refer to Chapter 28.

The basic philosophy for conversions performed by GMAT is that all conversions proceed from the internal
data type, and go through that type when converting from one system to another. Conversions for epoch
data are referenced to the base TAI epoch. Coordinate system conversions are referenced to the Mean of
J2000 Earth Equatorial system. Element conversions are referenced to the Cartesian or equinoctial state
representation.

All of the conversion components that support the Spacecraft and Formation classes have a similar
structure. Each acts as a pipeline from the data in the SpaceObject to the code that transforms that data
into the requested format. In that sense, the converters play the role of the controller in a simpli�ed model-
view-controller pattern, as described in Section B.6. The SpaceObject plays the role of the model, and the
presentation to the user � the GMAT GUI or the Script �le � presents a view of these data to the user.

There are three converters used by the SpaceObjects for this purpose. Each SpaceObject has a Time-
Converter, a CoordinateConverter, and a RepresentationConverter. The Converter classes contain instances
or references to the support classes used in the conversions. Each support class represents a single view of
the data. The support classes implement a conversion method that transform the internal data into the
requested view.

The class hierarchy for the converters and the support classes is shown in Figure 13.27. Each converter is
derived from the Converter base class. All converters support the ability to take a PropState and transform
the data in that state into the requested format for display and manipulation by the user. They also support
the inverse operation, converting a set of user data speci�ed into a PropState. The interfaces for these
conversions are contained in the Converter base class.

Each Converter subclass holds a reference to the data type used in the PropState as the base repre-
sentation for the corresponding data. The object that owns the PropState is responsible for setting this
reference.

13.5.1 The Converter Base Class
All conversions performed for spacecraft and formations are managed through the Converter classes. GMAT
provides three types of converters: time system converters, coordinate system converters, and state represen-
tation converters. Each of these converters manages the corresponding conversion code. The SpaceObjects
wrap these calls in methods that simplify interface to the data. Speci�c conversions are made through the
calls to the Convert method on the appropriate converters.

The Converter base class has the following internal data members and methods:

Class Attributes

• static StringArray supportedConversions: String array of all of the de�ned conversions supported
by this converter.

6The current implementation in GMAT uses Cartesian elements exclusively; equinoctial representations will be added as an
option for the PropState data when the Variation of Parameters integrators are incorporated into the system.

7Figure 13.2 shows the long term design for the conversion classes. The code base developed for the �rst release of GMAT
supports the interfaces needed for conversion, but only partially implements the illustrated design.

Draft: Work in Progress
118 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

Figure 13.2: Classes Used to Provide Views of the SpaceObject State Data. The converter classes are shown
in yellow. Base classes for the View support classes are green, and speci�c support classes are shown in blue.

• Integer precision: Precision used for numeric data when converting to a string format.

Methods
• void Initialize(): Method called to prepare and validate the converter for use in a SpaceObject.

• static bool AddConversion(const std::string &conversionType, GmatBase *toBase): Method
used to add support for a new conversion to the Converter. This method is used to add con�gured
CoordinateSystems to the CoordinateConverter. The TimeConverter and RepresentationConverter
classes do not support addition of new systems in the current builds of GMAT.

• static StringArray GetSupportedConversions(): Method used to return the list of all of the
conversions supported by the Converter.

• std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*=NULL
toObject) = 0: Abstract method that converts data from a PropState into the requested type.

• PropState Convert(std::vector<Real> fromState, std::string fromType, GmatBase*=NULL
fromObject) = 0: Abstract method that �lls a PropState in the internal representation from input
data of the speci�ed type.

• virtual StringArray ToString(std::string toFormat, std::vector<Real> value, std::string
fromFormat) = 0: Abstract conversion routine that takes a state in Real vector (value) in a speci�ed
format (fromFormat) and converts it to a string array in a target format (toFormat).

Draft: Work in Progress
13.5. CONVERSION CLASSES 119

• virtual std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string
toFormat) = 0: Abstract conversion routine that takes a the text form of a state in StringAr-
ray (value) in a speci�ed format (fromFormat) and converts it to a Real vector in a target format
(toFormat).

13.5.2 Time Conversions
The TimeConverter class provides implementations for the abstract methods inherited from the Converter
base class. The current code base supports time conversions using C-style functions enclosed in a namespace,
TimeConverterUtil. The TimeConverter class wraps these conversions so that there is a time conversion
interface in GMAT that looks identical to the other conversion interfaces in the system. A future release of
the system will rework the time conversions do that the class structure matches the class hierarchy shown
in Figure 13.2. The following descriptions provide initial steps toward this goal, marked as with the pre�x
��Future�� for elements that are not planned for the system until these elements are incorporated during
these time system revisions8.

Figure 13.3: Classes Used to Convert Epoch Data

The TimeConverter class is shown in Figure 13.3. The properties of this class, including the arguments
for the methods that are hidden in the �gure, are tabulated below.

Class Attributes

• �Future� TimeBase *baseTime: An instance of the base time system used internally in GMAT.
This member contains a pointer to a TAIModJulian instance so that the conversion code has the time
system for methods that use PropStates at one end of the conversion.

8GMAT is, by design, extensible to incorporate new components as they are identi�ed and constructed by the GMAT
community, without violating the integrity of the o�cial code base. The time system code as currently implemented would
require rework in the GMAT's base code to support any new time system, violating this requirement; the design shown here
provides the framework needed to correct this discrepancy.

Draft: Work in Progress
120 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

• �Future� std::vector<TimeBase*> timeSystems: A vector containing pointers to each of the
de�ned time systems in GMAT, so that the conversion code can perform conversions without requiring
time system pointers on the function calls.

Methods

• void Initialize(): Method called to prepare and validate the converter for use in a SpaceObject.

• std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*=NULL
toObject): Method that converts the TAI epoch data from a PropState into the requested type. The
resulting modi�ed Julian data is stored in the �rst element of the returned array.

• PropState Convert(std::vector<Real> fromState, std::string fromType, GmatBase*=NULL
fromObject): Method that sets the epoch on a PropState to the epoch contained as the �rst ele-
ment in the input data (fromState), which is expressed in the time system given by the name in the
fromType string.

• virtual StringArray ToString(std::string toFormat, std::vector<Real> value, std::string
fromFormat) = 0: Conversion routine that takes epoch data in a vector of Reals in a speci�ed format
(fromFormat) and produces the string equivalent of each element in the requested format, given by
toFormat, in the returned StringArray.

• virtual std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string
toFormat) = 0: Conversion routine that takes one or more epochs in a StringArray (value) in
a speci�ed format (fromFormat) and converts them into a vector of Real data in a target format
(toFormat). The resulting data is a vector of modi�ed Julian data in the target time system. If a
request is made from Gregorian data in the Real vector, an exception is thrown.

13.5.2.1 The TimeSystem Classes
As mentioned above, the current time system conversion code does not use a class bases system to handle
the time systems. This section will be completed when the time system code is brought into conformance
with the conversion system design.

13.5.3 Coordinate System Conversions
Figure 13.4 shows the CoordinateConverter class, used to transform state data between di�erent coordinate
systems. The CoordinateConverter class works with state data expressed in Cartesian coordinates exclusively.
Consumers that have state data in other representations �rst convert the data into Cartesian coordinates,
and then use the facilities provided by instances of this class to transform between coordinate systems.

The CoordinateConverter objects work with any coordinate system de�ned by the user. The other two
converters provided by GMAT � the TimeConverter class and the RepresentationConverter class � require
code compiled into GMAT in order to function9. Coordinate systems in GMAT can be de�ned at run time, as
described in [UsersGuide]. The dynamic nature of these objects requires greater versatility in the conversion
methods. Consumers of these methods must provide pointers to instances of the coordinate systems used in
the conversions.

13.5.3.1 CoordinateConverter Attributes and Methods
Class Attributes

9A future release of GMAT may allow dynamic de�nition of representations and time systems. That facility is not planned
for near term GMAT functionality.

Draft: Work in Progress
13.5. CONVERSION CLASSES 121

Figure 13.4: Classes Used to Convert Between Coordinate Systems

• CoordinateSystem *baseCoordSys: An instance of the CoordinateSystem class used as the base
class for conversions involving a PropState. This member is initialized to NULL, and set by SpaceOb-
jects that need it prior to use.

• Rmatrix33 lastRotMatrix: The most recent rotation matrix used in coordinate conversions, stored
so that it can be accessed externally.

• std::map <std::string, CoordinateSystem*> availableCoordSys: A map of coordinate systems
available for use in methods that do not pass on CoordinateSystem pointers. These pointers are stored
in a map so that they can be accessed by name.

Methods
• void Initialize(): Method called to prepare and validate the converter for use in a SpaceObject.

• bool Convert(A1Mjd epoch, Rvector inState, CoordinateSystem* inCoord, Rvector out-
State, CoordinateSystem* outCoord, bool forceNutationComputation = false, bool omit-
Translation = false): General purpose conversion routine that converts a Cartesian Rvector in a
given input coordinate system into a Cartesian Rvector in the output coordinate system.

• bool Convert(A1Mjd epoch, Real* inState, CoordinateSystem* inCoord, Real* outState,
CoordinateSystem* outCoord, bool forceNutationComputation=false, bool omitTransla-
tion=false): General purpose conversion routine that converts a Cartesian Real array in a given input
coordinate system into a Cartesian Real array in the output coordinate system. This method requires
that the input and output Real arrays both contain the Cartesian state in the �rst six elements.

• Rmatrix33 GetLastRotationMatrix() const: Method used to access the most recent rotation
matrix used in conversions.

Draft: Work in Progress
122 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

• std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*
toCS): Method that converts the state in the input PropState into the speci�ed CoordinateSystem.
The toCS parameter is a pointer to an instance of the target coordinate system. This method uses the
base coordinate system, baseCoordSys, as the coordinate system of the input PropState. The calling
code must ensure that the base coordinate system is set correctly.

• PropState Convert(std::vector<Real> fromState, std::string fromType, GmatBase* fromCS):
Method that sets the state in the data in a PropState in the base coordinate system, given an input
state in a speci�ed CoordinateSystem. The fromCS parameter is a pointer to an instance of the co-
ordinate system used for the input state, fromState. This method uses the base coordinate system,
baseCoordSys, as the coordinate system of the target PropState. The calling code must ensure that
the base coordinate system is set correctly.

• StringArray ToString(std::string toFormat, std::vector<Real> value, std::string fromFor-
mat): Method that takes a Cartesian state contained in a vector of Reals is a speci�ed coordinate
system, and converts it into a target coordinate system, then stores the data in a StringArray at the
precision set for the converter.

• std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string toFor-
mat): Method that takes a Cartesian state contained in a StringArray in a speci�ed coordinate system,
and converts it into a target coordinate system, then stores the data in a vector of Reals.

• void AddCoordinateSystem(CoordinateSystem *cs): Method used to add a CoordinateSystem
pointer to the map of available coordinate systems.

13.5.3.2 The CoordinateSystem Classes
Coordinate Systems in GMAT are described in detail in Chapter 12.

13.5.4 State Representation Conversions
Once the coordinate system has been selected for a state, the actual format for the data must also be
selected. The state can be displayed in many di�erent ways: as Cartesian data, as the corresponding
Keplerian elements, or in any other representation de�ned in GMAT. The conversion from the Cartesian
state into a selected representation is managed by the RepresentationConverter class, shown in Figure 13.5.

13.5.4.1 RepresentationConverter Attributes and Methods
Class Attributes

• SpacePoint* origin: The SpacePoint de�ning the coordinate system origin. Some representations
need this object to determine the representation data; for instance, the Keplerian representation needs
the gravitational constant for the body at the origin.

• StringArray elements: A vector of text string labels for the elements. This vector contains the
labels for the most recent target conversion.

• StringArray units: A vector of text string labels for the element units. This vector contains the
units for the most recent target conversion.

• �Future� Representation baseRep: The representation used for the PropState data.

• �Future� std::vector<Representation*> supportedReps: A vector of instances of all supported
representations, provided so that conversions can be made without passing in a pointer to a target
representation.

Draft: Work in Progress
13.5. CONVERSION CLASSES 123

Figure 13.5: Classes Used to Convert State Representations

Methods

• �Future� bool AddRepresentation(Representation* rep): Method used to register a new rep-
resentation with the converter. This method is used to register new representations that are built into
shared libraries loaded at run time.

• std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*
toRep=NULL): Method that converts the state in the input PropState into the speci�ed Represen-
tation. The optional toRep parameter is a pointer to an instance of the target Representation; if it
is not provided, the converter �nds an instance in its internal array of Representations. This method
uses the base representation, baseRep, as the representation of the input PropState. The calling code
must ensure that the base representation is set correctly.

• PropState Convert(std::vector<Real> fromState, std::string fromType, GmatBase* from-
Rep): Method that sets the state in the data in an PropState in the base representation, given an input
state in a speci�ed Representation. The fromRep parameter is a pointer to an instance of the Repre-
sentation used for the input state, fromState. This method uses the base Representation, baseRep, as
the representation of the target PropState. The calling code must ensure that the base representation
is set correctly.

• std::string SupportsElement(std::string label): Method used to query all supported representa-
tions to determine which representation supports a speci�ed element. The return value is the name of
the supporting representation.

Draft: Work in Progress
124 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

• StringArray ToString(std::string toFormat, std::vector<Real> value, std::string fromFor-
mat="Cartesian"): Conversion routine that generates a text view of the state contained in the input
Real vector in a target representation. The resulting StringArray contains data at the Converter's pre-
cision.

• std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string toFor-
mat="Cartesian"): Conversion routine that takes a text version of a state in a StringArray, expressed
in a speci�ed representation, and converts it into a Real vector of data in a target representation.

13.5.4.2 The Representation Classes
�Future�10 All state representations share a common interface, enforced by the Representation base class.
Representations like the Keplerian representation that provide options for certain elements provide the list
of options for the elements on an element by element basis..

13.6 Conversions in SpaceObjects
The SpaceObject classes � SpaceObject, Spacecraft, and Formation, and other classes as they are added to
GMAT � all share a common representation of locations in the GMAT SolarSystem, the PropState. As its
name implies, the PropState class is the core component that interacts with the propagation subsystem; it
contains the epoch, position and velocity data that is advanced to model the motion of user de�ned objects
in the solar system. The data stored in the PropState is a TAI epoch and the Mean-of-J2000 Cartesian
positions and velocities of the objects that are propagated. The origin for these data is a SpacePoint object
de�ned in the solar system. Each SpaceObject includes a pointer to the SPacePoint de�ning the origin and a
CoordinateSystem object con�gured as a Mean-of-J2000 Earth-Equatorial origin-centered coordinate system
to facilitate conversions between the data in the encapsulated PropState and external consumers of the data.

The PropState data is encapsulated inside of SpaceObject instances. Users interact with the PropState
indirectly, by making calls to these SpaceObjects. This feature provides a bu�ering mechanism to GMAT's
SpaceObjects, so that the data in the PropState can be formatted for presentation purposes for the user.
The SpaceObject class provides interfaces that convert the internal PropState data into other formats for
display, and that take data from those formats and convert them into the internal PropState structures
needed for computation.

SpaceObjects include four data structures used this bu�ering of the state data. The epochType and
stateType data members are strings containing the current settings for the displayed format of the epoch
and state representation. String versions of the epoch and state in these formats are stored in the textEpoch
and textState data members. These string versions of the data are the versions that users interact with
when con�guring a mission, either from the GUI or using the scripting interface. The following paragraphs
describe the procedure followed when performing these interactions.

13.6.1 SpaceObject Conversion Flow for Epoch Data
Figure 13.6 shows the procedure employed to send and receive epoch data for a SpaceObject using the string
format needed for display and output purposes. Epochs can be displayed in either Gregorian or Modi�ed
Julian format, using one of several di�erent supported time systems. The time system used and the format
for the output are separate entities, and treated as such in GMAT. The internal epoch data is stored in the
TAI system as a Modi�ed Julian Real number. This data is retrieved for external manipulation as a string,
using the GetEpochString() method on the SpaceObject that owns the epoch. Updated epoch data is passed
into the SpaceObject using the SetEpochFromString method.

10Like the time conversion classes, the representation conversion classes do not currently conform to the design presented
here. Accordingly, in the following descriptions, the elements that are not planned for immediate implementation are marked
as future enhancements.

Draft: Work in Progress
13.6. CONVERSIONS IN SPACEOBJECTS 125

Figure 13.6: Procedure for Retrieving or Setting a Formatted Epoch

The top activity diagram in the �gure shows the procedure followed to retrieve the current epoch data
from the SpaceObject using the GetEpochString method. The �rst action taken is a test to determine if the
target time format matches the epoch format used in the SpaceObject. If so, then the string that is returned
is the textEpoch data member for the SpaceObject, as set immediately after synchronizing the textEpoch
with the PropState. If the time systems do not match, the target time system is broken into two pieces:
the time system used and the format for the string. The format portion is the su�x on the toTimeType
parameter, and is either �ModJulian� or �Gregorian�. The GetEpochString method retrieves the epoch from
the PropState and, if the target system is not TAI, converts it into the target time system. Then it takes
that ModJulian real number, and converts it into a formatted string using the timeConverter's ToString
method.

The lower activity diagram in Figure 13.6 shows the procedure followed when setting the epoch from
the GUI or script, using the SetEpochString method on the SpaceObject. The �rst parameter in this call
speci�es the format of the input time. It is broken into the input time system and the format of the string.
The time converter then constructs a modi�ed Julian real value for the input string using its ToReal method.
If the input time is not a TAI time, it is then converted into TAI. The resulting modi�ed Julian epoch is
then set on the PropState using the SetEpoch method. Finally, the Synchronize method is called on the
SpaceObject to update the string representation of the epoch with the data in the PropState.

13.6.2 SpaceObject Conversion Flow for State Data
The state data in the PropState can be manipulated either element by element or as a complete vector. The
following paragraphs describe the conversion procedures for both approaches.

13.6.2.1 Converting State Vectors
Figure 13.7 shows the procedures employed to convert the state in vector form. State conversions are always
a two step procedure. The state data in the PropState is always de�ned with respect to the Mean-of-J2000
Earth Equatorial coordinate axes orientation, wit h the coordinate origin located at a user speci�ed origin.
The internal data is stored in the Cartesian representation11. Users can view the state in any de�ned

11A future update will allow internal storage in either Cartesian or Equinoctial elements, so that Variation of Parameters
propagation methods can be implemented.

Draft: Work in Progress
126 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

Figure 13.7: Procedure for Retrieving or Setting a Formatted State

coordinate system using any representation de�ned in GMAT. Hence the procedure for building the state
for display to the user potentially involves both a coordinate transformation and an element conversion, as
shown in the �gure.

Conversion of the PropState data for display is shown in the top diagram in the �gure. The state vector
is requested using the GetStateString method, which contains three parameters: the target representation in
the toType parameter, the name of the target coordinate system in the toCoords parameter, and a pointer
to an instance of the target coordinate system. The SpaceObject has a pointer to a base coordinate system,
along with the name of the base system. If these match the target coordinate system, then the coordinate
conversion step can be skipped; otherwise, the internal state vector in the PropState is converted into the
target coordinate system. The resulting intermediate state vector is then converted into a StringArray in
the target representation using the ToString() method on the SpaceObject's representation converter.

The lower diagram in Figure 13.7 shows the inverse process, used to set the state vector on a SpaceOb-
ject through the SetStateFromString method. This method has four parameters: the input state in the
StringArray parameter stateString, the representation that that StringArray uses (fromType), the name of
the coordinate system (fromCoords) used for the input state, and a pointer to an instance of that coordi-
nate system (fromCS). First the input state is converted into a Cartesian vector using the SpaceObject's
RepresentationConverter. Once the Cartesian state has been constructed, it is transformed into the internal
coordinate system and stored in the SpaceObject's PropState. Finally, the SpaceObject's text representation
of the state is updated suing the Synchronize method12

13.6.2.2 Converting Single Elements

The procedure for setting single state elements is shown in Figure 13.8. This procedure is slightly more
involved than the procedure employed to set a complete state because the procedure includes provisions for
setting elements from one representation while maintaining a di�erent text representation of the state in the
textState bu�er. This allows a user to script, for example, a semimajor axis for a spacecraft that stores its
state in a Cartesian representation. Element setting is performed using the standard SetStringParameter
method de�ned for all GmatBase subclasses.

12If both the representation and internal coordinate system for the PropState match the input values, the input state vector
strings are copied into the testState member, and Synchronize() is not called.

Draft: Work in Progress
13.6. CONVERSIONS IN SPACEOBJECTS 127

Figure 13.8: Procedure for Setting a Single Element in the State

The procedure employed for setting a single element when the element's name is a member of the current
state representation is straightforward. The string containing the new element data in inserted into the
textState string array, converted into a real vector in Cartesian coordinates by the representation converter,
and then into the internal coordinate system by the coordinate system converter. This state is set on the
PropState.

If the element is not a member of the current representation, the procedure is slightly more complicated.
The textState is converted from the current state type into a vector of real numbers in the representation
containing the element that is being set. The element is set to the input value, and the resulting vector is con-
verted back into the textState StringArray. Then the textState is converted into the internal representation
and coordinate system as described in the previous paragraph.

Draft: Work in Progress
128 CHAPTER 13. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

Draft: Work in Progress

Chapter 14

Spacecraft Hardware

Darrel J. Conway
Thinking Systems, Inc.

Chapter 13 described the structure of the core spacecraft model used in GMAT. This chapter examines
the components that can be used to extend the spacecraft model to include models of hardware elements
needed to model �nite maneuvers and sensor measurements.

14.1 The Hardware Class Structure
14.2 Finite Maneuver Elements
14.2.1 Fuel tanks
14.2.2 Thrusters

14.3 Sensor Modeling in GMAT
GMAT does not contain sensor modeling capabilities at this time. The Hardware class infrastructure was
designed to support sensor modeling at a later date.

14.4 Six Degree of Freedom Model Considerations

129

Draft: Work in Progress
130 CHAPTER 14. SPACECRAFT HARDWARE

Draft: Work in Progress

Chapter 15

Attitude

Wendy C. Shoan
Goddard Space Flight Center

15.1 Introduction
GMAT provides the capability to model the attitude of a spacecraft. The attitude can be computed in
any of three di�erent ways: kinematically, by performing six-degree-of-freedom calculations, or by reading
an attitude �le (format(s) TBD). The current version of GMAT has only two types of kinematic modeling
available; other methods are to be implemented at a later date.

15.2 Design Overview
When the user creates a Spacecraft object, via the GUI or a script, and s/he needs to compute or report the
attitude of that spacecraft at one or more times during the run, s/he must specify a type of attitude for the
spacecraft. The user must also set initial data on the spacecraft attitude.

A Spacecraft object therefore contains a pointer to one Attitude object, of the type speci�ed by the user.
This object will need to be created and set for the spacecraft using its SetRefObject method. The spacecraft
object contains a method to return its attitude as a direction cosine matrix, and a method to return its
angular velocity.

GMAT can model several di�erent types of attitude, as mentioned above, each computing the attitude
di�erently. However, since the types of attitude representations are common to all models, many of the data
and methods for handling attitude are contained in a base class, from which all other classes derive.

The base class for all attitude components is the Attitude class. It contains data and methods required
to retrieve spacecraft attitude and attitude rate data. The method that computes the attitude is included
as a pure virtual method, and must be implemented in all leaf classes.

The base Attitude class contains methods that allow the user, the spacecraft, or other GMAT subsystems,
to request attitude and attitude rate data in any of several di�erent parameterizations. Attitude may be
returned as a quaternion, a direction cosine matrix, or a set of Euler angles and a sequence. An attitude
rate is retrievable as an angular velocity or as an Euler axis and angle (computed using the Euler sequence).

Also included in the base Attitude class are many static conversion methods, allowing other parts of
GMAT to convert one attitude (or attitude rate) parameterization to another, depending on its needs,
without having to reference a speci�c spacecraft or attitude object.

As mentioned above, GMAT includes several di�erent attitude models. Kinematic attitude propagation
options are 1) a Coordinate System Fixed (CSFixed) attitude; 2) a Spinner attitude; and 3) Three-Axis
Stabilized attitude (TBD).

131

Draft: Work in Progress
132 CHAPTER 15. ATTITUDE

To implement these, GMAT currently has a Kinematic class that is derived from the Attitude class. The
CSFixed (Coordinate System Fixed) and Spinner attitude classes derive from the Kinematic class and, as
leaf classes, contain implementations of the method, inherited from the base class Attitude, that computes
the attitude at the requested time.

15.3 Class Hierarchy Summary
This section describes the current attitude classes in GMAT, summarizing key features and providing addi-
tional information about the class members. Figure 15.1 presents the class diagram for this subsystem.

15.3.0.1 Attitude
The Attitude class is the base class for all attitude classes. Any type of attitude that is created by user
speci�cation, via a script or the GUI, will therefore include all public or protected data members and methods
contained in the Attitude class. Key data and methods are:

Data members

• eulerSequenceList: a list of strings representing all of the possible Euler sequences that may be
selected by the user

• refCSName: the name of the reference coordinate system - the user must supply this

• refCS: a pointer to the reference coordinate system - this must be set using the attitude object's
SetRefObject method

• initialEulerSeq: an UnsignedIntArray containing the three values of the initial Euler sequence

• initialEulerAng: an Rvector3 containing the three initial Euler angles (degrees)

• initialDcm: an Rmatrix33 containing the initial direction cosine matrix

• initialQuaternion: Rvector representation of the initial quaternion

• initialEulerAngRates: Rvector3 containing the initial Euler angle rates (degrees/second)

• initialAngVel: Rvector3 containing the initial angular velocity (degrees/second)

Methods

• GetEpoch(): returns the epoch for the attitude

• SetEpoch(Real toEpoch): sets the value for the attitude; this method is called by the GUI, script
interpreter or spacecraft

• SetReferenceCoordinateSystemName(const std::string &refName): sets the reference coor-
dinate system name

• GetEulerSequenceList(): returns a list of strings representing all possible Euler sequence values

• GetQuaternion(Real atTime): returns the quaternion representation of the attitude, computed at
the A1Mjd time atTime

• GetEulerAngles(Real atTime): returns the Euler angle representation of the attitude, computed
at the A1Mjd time atTime

Draft: Work in Progress
15.3. CLASS HIERARCHY SUMMARY 133

Figure 15.1: Attitude Classes

Draft: Work in Progress
134 CHAPTER 15. ATTITUDE

• GetCosineMatrix(Real atTime): returns the direction cosine matrix representation of the attitude,
computed at the A1Mjd time atTime

• GetAngularVelocity(Real atTime): returns the angular velocity representation of the attitude
rate, computed at the A1Mjd time atTime

• GetEulerAngleRates(Real atTime): returns the Euler angle rates representation of the attitude
rate, computed at the A1Mjd time atTime

In addition to class methods, there are several static methods in the base Attitude class that may be
used without instantiating an object of type Attitude. These are all methods to convert between attitude
representations or between attitude rate representations (angles are assumed to be in radians). They are:

• ToCosineMatrix(const Rvector &quat1): converts the input quaternion to a direction cosine
matrix

• ToCosineMatrix(const Rvector3 &eulerAngles, Integer seq1, Integer seq2, Integer seq3):
converts the input Euler angles and sequence to a direction cosine matrix

• ToEulerAngles(const Rvector &quat1, Integer seq1, Integer seq2, Integer seq3): converts
the input quaternion to Euler angles, given the input Euler sequence

• ToEulerAngles(const Rmatrix33 &cosMat, Integer seq1, Integer seq2, Integer seq3): con-
verts the input direction cosine matrix to Euler angles, given the input Euler sequence

• ToQuaternion(const Rvector3 &eulerAngles, Integer seq1, Integer seq2, Integer seq3):
converts the input set of Euler angles and sequence to a quaternion

• ToQuaternion(const Rmatrix33 &cosMat): converts the input direction cosine matrix to a
quaternion

• ToEulerAngleRates(const Rvector3 angularVel, Integer seq1, Integer seq2, Integer seq3):
converts the input angular velocity to Euler angle rates, using the input Euler sequence

• ToEulerAngleRates(const Rvector3 eulerRates, Integer seq1, Integer seq2, Integer seq3):
converts the input Euler angle rates to angular velocity, using the input Euler sequence

15.3.0.2 Kinematic
The Kinematic class is the base class for the kinematic models: Coordinate System Fixed, Spinner, and
Three-Axis Stablized (TBD). At this time, there are no additional data members or methods for this class.

15.3.0.3 CSFixed
The CSFixed class models a Coordinate System Fixed attitude. The user supplies the initial attitude and
speci�es the reference coordinate system, from the current set of default and user-de�ned coordinate systems,
to which the attitude is �xed. Since the attitude is �xed to this coordinate system, no initial attitude rate
need be provided. The code in this class then computes the attitude at a requested time using the initial
input data and the rotation matrix between the reference coordinate system and the inertial coordinate
system at the speci�ed time, obtained from the Coordinate System subsystem. There are no signi�cant data
members.

Methods
• ComputeCosineMatrixAndAngularVelocity(Real atTime): computes the direction cosine ma-

trix and angular velocity at the requested time; these data can then be retrieved in other representations
as well

Draft: Work in Progress
15.4. PROGRAM FLOW 135

15.3.0.4 Spinner
This class models a Spinner attitude. The user must supply an initial attitude and reference coordinate
system when initializing a Spinner attitude. In addition, s/he must provide an initial attitude rate. This
rate does not change over time, for this model. The initial epoch is expected to be an A1Mjd time, input
as a Real, and is assumed to be the same as the orbit epoch (i.e. when the orbit epoch is set, the spacecraft
knows to use that epoch for the attitude as well). This class can then compute the attitude at a speci�ed
time, using the initial input data and the rotation matrix from the reference coordinate system to the inertial
coordinate system at the epoch time. It contains some protected data members to store data computed on
initialization.

Methods
• ComputeCosineMatrixAndAngularVelocity(Real atTime): computes the direction cosine ma-

trix and angular velocity at the requested time; these data can then be retrieved in other representations
as well

15.4 Program Flow
After an Attitude object is created and passed to a Spacecraft object, the initial data must be set. Then, as
it is for most objects, the Initialize method must be called on the attitude. After that, the Attitude object
is ready to compute the spacecraft attitude at any time requested.

15.4.1 Initialization
As mentioned above, the user must specify attitude initial data for a spacecraft, via the GUI or the script.
An example script appears here:

%--
%------------------ Spacecraft Attitude Mode ----------------------------
%--
Sat.AttitudeMode = {Kinematic, 6DOF, FromFile};
Sat.KinematicAttitudeType = { Spinner, CSFixed}; % 3-Axis TBD

%--
%------------------ Spacecraft Attitude Coordinate System ---------------
%--
Sat.AttitudeCoordinateSystem = MJ2000Ec;

%--
%-------------- Spacecraft Attitude Initial Data ------------------------
%--
Sat.AttitudeStateType = {EulerAngles, Quaternion, DCM};
Sat.EulerAngleSequence = {123, 132, 213, 312, ... 321};
Sat.EulerAngle1 = 5.0; % degrees
Sat.EulerAngle2 = 10.0; % degrees
Sat.EulerAngle3 = 15.0; % degrees
% Sat.q1 = 0.0; % these are set if the type is Quaternion
% Sat.q2 = 0.0;
% Sat.q3 = 0.0;
% Sat.q4 = 1.0;
% Sat.DCM11 = 1.0; % set if attitude type is DCM

Draft: Work in Progress
136 CHAPTER 15. ATTITUDE

% Sat.DCM12 = 0.0;
...
% Sat.DCM33 = 1.0;

Sat.AttitudeRateStateType = {EulerAngleRates, AngularVelocity};
Sat.EulerAngleRate1 = 5.0;
Sat.EulerAngleRate2 = 5.0;
Sat.EulerAngleRate3 = 5.0;
% Sat.AngularVelocityX = 5.0; % set if attitude rate type is angular velocity
% Sat.AngularVelocityY = 5.0;
% Sat.AngularVelocityZ = 5.0;

In all models, the initial attitude may be input as a direction cosine matrix, a quaternion, or a set of
Euler angles and sequence. The initial rate may be input as an angular velocity or as an Euler axis and
angle (to be used along with an Euler sequence from the input attitude speci�cation).

15.4.2 Computation
GMAT uses the initial data to compute the attitude at any time requested. For better performance, GMAT
keeps track of the last attitude computed, and the time for which it was computed, and only recomputes
when necessary.

For the two models implemented thus far, it is necessary for GMAT to compute a rotation matrix (and
for the CSFixed attitude, its derivative as well) between the inertial (MJ2000 Equatorial) coordinate system
and the speci�ed reference coordinate system. GMAT has this capability, implemented in its Coordinate
System subsystem.

Draft: Work in Progress

Chapter 16

Script Reading and Writing

Darrel J. Conway
Thinking Systems, Inc.

GMAT stores mission modeling data in a text �le referred to as a GMAT script �le. The scripting
language used in GMAT is documented in [UsersGuide]. This chapter describes the architecture of the
ScriptInterpreter subsystem, which is used to read and write these �les.

GMAT scripts, like MATLAB scripts, are case sensitive. In the sections that follow, script elements, when
they appear, will be written with the proper case. That said, this chapter is not meant to be a comprehensive
text on GMAT scripting. Script lines and portions of lines are presented here for the purpose of describing
the workings of the ScriptInterpreter and related classes.

16.1 Loading a Script into GMAT
Figure 16.1 shows the sequence followed when GMAT opens a script �le and reads it, constructing internal
objects that model the behavior dictated by the script. Some of the detailed work performed in this process
is dictated by the properties of the objects; the �gure provides the general �ow through the process. The
�gure is color coded to re�ect three basic groupings of actions taken while reading a script �le. The large
scale �ow through the ScriptInterpreter system is colored blue; actions that a�ect con�gured objects are
colored green, and actions related to the time ordered Mission Sequence are colored yellow. This �gure
shows a fair amount of complexity; the section describing the subsystem classes breaks this complexity into
more manageable pieces.

When a user instructs GMAT to read a script, either from the command line or from the graphical user
interface, the Moderator receives an InterpretScript() command containing the name of the �le that needs
to be read. This command calls the Interpret() command on the ScriptInterpreter, which uses the classes
and methods provided in the Interpreter subsystem and described in this chapter, to read the script and
con�gure the objects described in it.

There are four types of physical lines in a script �le: (1) comment lines, which start with a percent sign
(%), (2) object de�nition lines, which start with the word �Create�, (3) command lines, which start with
the text assigned to a GmatCommand class, and (4) assignment lines, which optionally start with the word
�GMAT�1. Comments can be appended on the end of script lines; when that happens, all of the text following
the percent sign comment delimiter is associated with the line and referred to as an inline comment in this
document.

1The GMAT keyword is automatically inserted on assignment lines when a script is written. The ScriptReadWriter class
has an internal �ag that toggles this feature on and o� when writing, so that future versions of GMAT can provide the ability
to turn this feature on or o�.

137

Draft: Work in Progress
138 CHAPTER 16. SCRIPT READING AND WRITING

Figure 16.1: Sequence Followed when Loading a Script into GMAT

The script �le is read one �logical block� at a time, using the ScriptReadWriter helper class. A logical
block consists of one or more physical lines in the script �le. Each logical block can have three elements: one
or more lines of opening comments (identi�ed with leading % characters), an instruction that tells GMAT
to do something, and an inline comment appended to the end of the instruction. Each logical block has at
least one of these elements, but need not have all three. Inline comments cannot exist on their own � they
require the instruction component.

The instruction element can be split up over multiple physical lines in the script �le, as long as each
physical line is terminated by ellipsis (...). Inline comments for a multiline instruction must be placed at
the end of the last physical line of the block. White space at the beginning of each line of an instruction
is discarded. Lines that are continued using ellipsis markers pick up an extra space in place of the ellipsis
characters. Instructions in a logical blocks can be terminated with a semicolon; this character has no e�ect
in GMAT2. Once a logical block has been read from the �le using these rules, it is analyzed to determine
the type of information contained in the block.

The ScriptInterpreter treats comment lines that start with the sequence � %-------� as a special type
of comment, called a block delimiter. These lines are ignored by the ScriptInterpreter when reading a script.
Details concerning comment handling are presented later in this chapter, as are the detailed control �ow
procedures GMAT follows when working with scripts.

2Semicolons are used in MATLAB to suppress display of the result of the line of text. Since GMAT scripts can be read in the
MATLAB environment, the GMAT scripting language allows, but does not require, a semicolon at the end of an instruction.

Draft: Work in Progress
16.1. LOADING A SCRIPT INTO GMAT 139

16.1.1 Comment Lines
Comments in GMAT scripts are started with the percent sign (%). Comments can exist in one of two
di�erent forms: either on individual lines, or inline with other GMAT scripting, as shown here:

%---1

%----------- Spacecraft Components ------------2

%---3

4

% This is the main spacecraft in the mission.5

Create Spacecraft mainSat % Not to be confused with MaineSat6

GMAT mainSat.X = 42165.0 % Start at GEO distance7

GMAT mainSat.Y = 0.08

GMAT mainSat.Z = 0.09

% This is the velocity part. I've intentionally made the10

% indentation ugly to make a point: leading white space is11

% preserved in comment lines.12

GMAT mainSat.VX = 0.0 % But slower than a circular orbit13

GMAT mainSat.VY = 1.4014

GMAT mainSat.VZ = 0.9515

Lines 1-3 and lines 5 and 10-12 are individual comment lines. Lines 6, 7 and 13 contain inline comments.
The individual comment lines fall into two categories: lines 1-3 here are block delimiter lines, denoted by
the delimiter identi�er at the start of each line, while lines 5 and 10-12 are user supplied comments. The
ScriptInterpreter inserts the block comments automatically when a script is written, and skips over those
comment lines when reading the script. The user provided comments like lines 5 and 10-12 are stored with
the data provided immediately after those lines. In this script snippet, for example, the comment �% This
is the main spacecraft in the mission� is associated with the object creation line, and stored as an
object level comment for the Spacecraft named mainSat. The comments on lines 10-12:

% This is the velocity part. I've intentionally made the10

% indentation ugly to make a point: leading white space is11

% preserved in comment lines.12

are associated with the assignment line �GMAT mainSat.VX = 0.0�, and stored, including linebreaks, in the
data member associated with the object parameter mainSat.VX. Each entire line is stored, including the
leading whitespace, so that the ScriptInterpreter can reproduce the comment verbatim.

Inline comments are stored with the GMAT structure that most closely matches the comment line. Hence
the inline comment on line 6 is stored in the data member associated with the Spacecraft mainSat, while
the inline comments on lines 7 and 13 are stored incorresponding members of a StringArray in that object
that maps the comment to the corresponding spacecraft parameters: mainSat.X and mainSat.VX for this
example.

The ScriptInterpreter makes these associations when it �nds comments in a script. Comment lines
are bu�ered in the ScriptInterpreter, and written to the next resource encountered in the script �le. The
GmatBase class contains the data structures and interfaces needed to implement this functionality. These
interfaces are shown in Figure 16.2.

There are two additional types of comment blocks that GMAT manages. Comments that occur at the
beginning and at the end of a script are saved in the ScriptInterpreter in case they are needed for display
on the GUI or when writing a script. The header comment consists of all comment lines found at the start
of a script to the �rst blank line in the script. If an instruction is detected before a blank line, the header
comment is set to the empty string. Similarly, the script's footer comment consists of all comments that are
found after the �nal instruction in the script. If no comments are found after the �nal instruction, the footer
comment is set to the empty string.

Draft: Work in Progress
140 CHAPTER 16. SCRIPT READING AND WRITING

Figure 16.2: Scripting Interfaces in the User Classes

16.1.2 Object De�nition Lines
When the ScriptInterpreter detects an object de�nition instruction (starting with the word �Create�), it
breaks the line into three pieces: the initial �Create� keyword, the type name for the object that needs to be
created, and one or more names used for the created objects. When multiple objects are created on a single
line, the object names are separated using commas3. Three examples of object de�nition are provided here:

Create Spacecraft MMSRef;1

Create Spacecraft MMS1, MMS2, MMS3, MMS4;2

Create Array squareArray[3, 3] notSquare[4, 7] vector[6]3

The �rst script line here (�Create Spacecraft MMSRef;�) demonstrates basic object creation. When the
ScriptInterpreter parses this line, it calls the Moderator and instructs it to create an instance of the Spacecraft
class named MMSRef. The Moderator calls the appropriate factory (the spacecraft factory in this case) and
obtains the object. It then adds this object to the con�gured objects, and returns the object pointer to
the ScriptInterpreter. The ScriptInterpreter validates the returned pointer, ensuring that the pointer is not
NULL, performs �nalization on the object by calling the �FinalizeCreation()� method, and then moves
to the next line. If no factory is available to create the object, the Moderator throws an exception which the
ScriptInterpreter handles. The ScriptInterpreter throws an expection that is displayed to the user, indicating
the line number of the o�ending line, the nature of the error encountered, and, in quotation marks, the text
of the line that caused the error.

The second script line (�Create Spacecraft MMS1, MMS2, MMS3, MMS4;�) works identically, calling the
Moderator four consecutive times to create the four spacecraft named MMS1, MMS2, MMS3, and MMS4.
Each object is created, validated by testing the returned pointer to see if it is NULL, and �nalized using

3Note that commas are required. This restriction comes from the interoperability requirement between GMAT and MATLAB.
If the commas are omitted, then when MATLAB parses the line, it creates a cell array for the elements following the Create
keyword. A similar constraint applies to all script instructions when the blocks in the instruction exist outside of parentheses,
brackets, or braces.

Draft: Work in Progress
16.1. LOADING A SCRIPT INTO GMAT 141

FinalizeCreation(). The ScriptInterpreter loops through the list of requested objects, and performs this
procedure one name at a time.

The array creation line (�Create Array squareArray[3, 3] notSquare[4, 7] vector[6]�) requires
a bit of additional parsing. Arrays require the count of the number of rows and columns4 in the array before
it can be constructed. These counts are contained in square braces in the array creation line. Each array
on the line has a separate �eld indicating this size. If a user speci�es a single dimension for the array, as
in the case of the array named vector in this example, that dimension is the column count for the object:
vector as speci�ed here is a 1 by 6 array. Once the size parameters have been parsed, the ScriptInterpreter
proceeds as before: the Moderator is called and instructed to create an array with the desired dimensions.
This array is created in the factory subsystem, added to the object con�guration, and returned to the
ScriptInterpreter for pointer validation. Once the pointer has been validated, the ScriptInterpreter executed
the FinalizeCreation() method on the new object, and then proceeds to the next line of script.

16.1.3 Command Lines
If the logical block is not an object de�nition line, the ScriptInterpreter next checks to see if the line is a
GMAT command. GMAT commands all start with the keyword assigned to the speci�c command; examples
include Propagate, For, Maneuver, Target, and BeginFiniteBurn. A typical (though simple) command
sequence in a script is shown here:

For i = 1 : 5
Propagate propagator(satellite, {satellite.ElapsedDays = 1.0})

EndFor;

The command sequence is usually found after all of the objects used in the script have been de�ned and
con�gured in the script �le. A complete list of the commands available in the con�guration managed GMAT
code5 can be found in the User's Guide[UsersGuide]. The ScriptInterpreter builds a list of commands in the
system upon initialization. It uses this list to determine if a script line contains a command. If the �rst word
in the script line is in the list of commands, the ScriptInterpreter calls the Moderator, requesting a command
of the indicated type. The Moderator uses the factory subsystem to create the command. It then adds the
command to the Mission Sequence using the Append method on the �rst command in the sequence. One
item to note here: the commands manage the time ordering of the sequence through the Append interface of
the GmatCommand classes; the ScriptInterpreter does not directly set the command sequence ordering.

Once a command has been created in the Moderator, the Moderator returns the new command to the
ScriptInterpreter. At this point, the command has not yet been con�gured with the details of the script line
that was used to create it. GMAT commands can be con�gured in one of two di�erent ways: they can parse
and con�gure internal data using methods inside the command, or they can receive con�guration settings
from the ScriptInterpreter. Only one of these options exists for each command � either the command is self-
con�guring, or it relies on the ScriptInterpreter for con�guration. Self-con�guring commands override the
InterpretAction method de�ned in the GmatCommand base class to parse the script line; this approach allows
the creation of commands that do not follow a generic con�guration strategy. The default implementation
of the InterpretAction method returns false, indicating that the ScriptInterpreter needs to complete the
command con�guration. Further details of command con�guration can be found in Chapter 23.

The ScriptInterpreter takes the newly created command and passes the script line into it. Then the
ScriptInterpreter calls the InterpretAction method on the command. If the InterpretAction method succeeds,
the ScriptInterpreter considers the command fully con�gured, completing parsing for this line of script. If
the InterpretAction method returns false, the ScriptInterpreter parses the rest of the command line and
con�gures the command accordingly.

4GMAT does not support matrices with more than 2 dimensions at this time.
5Note that since commands are user objects, the command list can be expanded using a user de�ned library, as discussed in

Chapter 28.

Draft: Work in Progress
142 CHAPTER 16. SCRIPT READING AND WRITING

16.1.4 Assignment Lines
The �nal type of logical block that the ScriptInterpreter can encounter is an assignment line. GMAT
assignment lines all take the form

<<Left Hand Side>> = <<Right Hand Side>>

Assignment lines perform multiple purposes in GMAT. Assignment lines can be used to initialize the internal
data for an object, to reset the value of a piece of internal data, to set one object's data to match another
object's, or to perform custom calculations as described in Chapter 26. This complexity adds an underlying
wrinkle to GMAT's internal structure when parsing an assignment line: assignment lines in a script can set
object data or represent Assignment commands in the Control Sequence. The ScriptInterpreter tracks the
state of a script while parsing; it starts the parsing sequence in �object� mode, and toggles into �command�
mode when the �rst command is encountered. This mode switching has direct implications on the way
assignment commands are handled: when in object mode, assignment commands can set the values of
parameters on con�gured objects. In command mode, this parameter setting is deferred until the script is
executed. The following script segment illustrates this di�erence:

Create Spacecraft sat; % Start in object mode1

Create Propagator prop;2

GMAT sat.SMA = 10000.0; % Set some object parameters3

GMAT sat.ECC = 0.25;4

GMAT sat.TA = 0.0;5

6

Propagate prop(sat, {sat.Apoapsis}); % Switches to command mode7

GMAT sat.SMA = 12500.0; % Brute force circularization8

GMAT sat.ECC = 0.0;9

Propagate prop(sat, {sat.ElapsedDays = 1.0});10

The assignment lines in this script all begin with the GMAT keyword. The �rst three assignments (lines 3 -
5) are used to set the internal data on the Spacecraft named sat. When the ScriptInterpreter builds the
Propagate command on line 7, it switches into command mode. The next assignment lines, lines 8 and
9, do not set the internal data on sat during script parsing. Instead, they each construct an Assignment
command which is inserted into the command sequence, con�gured to set the internal Spacecraft data when
that Assignment command �res during the run of the mission. In e�ect, the assignments made here are
postponed; the Spacecraft parameter is set to the scripted value when the Assignment command executes
for the scripted line, rather than when the ScriptInterpreter parsed the line of script. This toggling from
object mode into command mode makes it possible for a user to reset object properties partway through the
execution of a script; other uses include the ability to alter the mass of the spacecraft, modeling the release
of a stage during a mission, and adding new spacecraft to or removing spacecraft from a formation that has
already propagated for a period of time.

When an assignment line is parsed by the ScriptInterpreter, the ScriptInterpreter �rst breaks the line
into three pieces: the left hand side, the equals sign, and the right hand side. If the equals sign is missing,
the ScriptInterpreter throws an exception and exits. The left hand side (LHS) may start with the keyword
�GMAT�. If it does, this word is ignored by the ScriptInterpreter6. After the optional keyword, the LHS of
the line can consist of one and only one entity: either an object parameter, an object name, or an array
element identity, as shown here:

GMAT sat.X = ... % An object parameter1

forceModel.Gravity.Earth.Degree = ... % A nested object parameter2

6The GMAT keyword simpli�es script interchangability between GMAT and MATLAB; the GMAT keywork can be used to
tell MATLAB that the line is a special construct, built for GMAT, when a script �le is read in the MATLAB environment.

Draft: Work in Progress
16.2. SAVING A GMAT MISSION 143

sat2 = ... % Object assignment3

GMAT squareArray(1,3) = ... % Array element setting4

vector(3) = ... % More array element setting5

myFormation.Add = ...6

GMAT SatReplacement1.Z = ... % Another object parameter7

Note that the GMAT preface on lines 1, 4, and 7 is optional. When a valid right hand side (RHS) is provided,
all of these lines will be parsed correctly by the ScriptInterpreter. Line 2 deserves some special consideration
here. This line sets a parameter on an object owned by a force model. The ScriptInterpreter includes parsing
capabilities that it uses to drill into owned objects like this one; these capabilities are described in the class
descriptions later in this chapter.

The right side of an assignment line provides the data that is set for the left side. This data can be a
number, a string, an object name, a GMAT or MATLAB function, an array or array element, or an equation.
Working from the partial lines presented earlier, some examples of complete assignment lines are:

GMAT sat.X = 7218.88861988453; % A number1

forceModel.Gravity.Earth.Degree = 12 % An integer for a nested object2

sat2 = sat3 % All object attributes (except the name)3

GMAT squareArray(1,3) = sat1.VZ % Array element set to an object property...4

vector(3) = BuildZComponent(sat2) % ...and to a function return value5

myFormation.Add = SatReplacement1 % A string -- here an object name6

GMAT SatReplacement1.Z = vector(3); % An array element7

The ScriptInterpreter provides the interfaces required to con�gure these RHS elements as well. It �rst
analyzes the RHS string and determines the type of expression encoded in the string. The string is then
decomposed into its constituent elements, which are con�gured based on the detected type information. If
the ScriptInterpreter is operating in object mode, it remains in object mode as long as the LHS is an object
parameter and the RHS provides data compatible with that parameter. If this condition is not met, then
the ScriptInterpreter builds an Assignment command for the assignment line, and sets up the objects for
this command.

Once all of the lines in a script �le have been parsed and the corresponding actions taken, the ScriptInter-
preter takes a �nal pass through the objects in memory. This �nal pass is used to set intermediate pointers
where needed for the user interface � for instance, Spacecraft created in a script need to have pointers set
to referenced coordinate systems so that conversions between element representations can be performed on
the user interface.

16.2 Saving a GMAT Mission
The procedure followed when writing a script �le from GMAT is markedly simpler than that followed when
parsing a script �le. Figure 16.3 shows the basic control �ow exercised when the ScriptInterpreter writes
a script �le. First the ScriptInterpreter initializes itself if it has not been initialized previously, and opens
the output stream that is the target of the script. Then the ScriptInterpreter retrieves the con�gured items
by type, and writes these items to the output stream. Comment lines are inserted at appropriate places
during this process, as indicated in the �gure. After all of the con�gured objects have been written, the
ScriptInterpreter walks through the command sequence, writing the commands out in order. This completes
the script writing process.

Script writing is signi�cantly simpli�ed because each user con�gurable object in GMAT includes a method,
GetGeneratingString(), which returns the full script string required to reproduce the object. This interface
is included in the GmatBase class diagram, Figure 16.2. The GetGeneratingString() method essentially
serializes any GMAT object derived from GmatBase (see Section 9.3). When the GetGeneratingString
function is called, the object builds this string based on its internal data. Command strings consist of a

Draft: Work in Progress
144 CHAPTER 16. SCRIPT READING AND WRITING

Figure 16.3: Sequence Followed when Writing a Script

single instruction, optionally decorated with preceding comments or inline comments. Con�gured objects
build multi-instruction strings, consisting of an opening �Create� line and the assignment lines required to
set the internal object parameters. Details of this process are shown in Figure 16.4. The ScriptInterpreter
just calls this method sequentially on the objects to write the requested script.

This same facility is used at several other places in GMAT. The MATLAB interface supports seri-
alization and passing of GMAT objects into MATLAB classes. This support is also provided by the
GetGeneratingString() method. Similarly, the GMAT graphical user interface includes a popup win-
dow that shows scripting for all GMAT objects and commands. The GetGeneratingString() method is
called to populate this window.

16.3 Classes Used in Scripting
The preceding sections described the process followed when reading and writing scripts. This section outlines
how those processes are implemented in GMAT.

Draft: Work in Progress
16.3. CLASSES USED IN SCRIPTING 145

Figure 16.4: Sequence Followed by GmatBase::GetGeneratingString() when Writing a Script

16.3.1 The Script Interpreter
The ScriptInterpreter is the class that manages the reading and writing of script �les for GMAT. It makes
use of several helper classes when actually reading and writing scripts, along with core Interpreter functions
from the Interpreter base class. Actions taken by the ScriptInterpreter can be broken into two categories:
script reading and script writing. The complexity of these processes is shown in Figures 16.1 and 16.3. In
this section, the Interpreter and ScriptInterpreter classes are described, along with their helper classes, the
ScriptReadWriter and the TextParser. These classes are shown in Figure 16.5. Then the process followed
to accomplish each of the reading and writing tasks is presented. Script reading is particularly complex, so
the script reading procedure is broken into descriptions of the process followed for each of the four types of
script blocks GMAT supports. The description of the class interactions performed when reading a script can
be found in Section 16.4. The class interactions followed when writing a script are outlined in Section 16.4.

16.3.1.1 Global Considerations

The Interpreter subsystem used several components that exist at the program scope in GMAT. There are
three enumerations used by the Interpreters that are de�ned in the Gmat namespace:

• Gmat::ParameterType: An enumeration used to identify the data type for internal parameters in
GmatBase derived objects.

• Gmat::WriteMode: An enumeration that identi�es the type of output requested from a call to an
object's GetGeneratingString() method.

• Gmat::BlockType: An enumeration identifying the type of logical block parsed from a script.

Draft: Work in Progress
146 CHAPTER 16. SCRIPT READING AND WRITING

Figure 16.5: Classes in the ScriptInterpreter Subsystem

The �rst two of these enumerations, ParameterType amd WriteMode, are used in a fairly rigid manner
in the Interpreter subsystem. ParameterTypes are used to determine how to access the internal data on
objects for reading and writing; the object is queried for the type of the internal parameter, and that
parameter is accessed accordingly. For example, when a parameter value on an object needs to be set, the
Interpreter use the results of this query to call the correct set method on the object � SetRealParameter
for �oating point data, SetIntegerParameter for integers, SetStringParameter for strings, and other calls for
their corresponding types.

When calling the GetGeneratingString methods on objects, the Interpreters need to identify the style
of text that is required. This style is identi�ed using the identi�ers in the WriteMode enumeration. The
ScriptInterpreter uses the Gmat::SCRIPTING entry from this list. Objects that are passed to MATLAB use
the Gmat::MATLAB_STRUCT entry, and so forth.

The BlockType enumeration has four members: COMMENT_BLOCK, DEFINITION_BLOCK, COM-
MAND_BLOCK, and ASSIGNMENT_BLOCK. These members are used to identify the type of logical
block parsed from a script, as described in Section 16.4.

16.3.1.2 The ScriptInterpreter Class
The ScriptInterpreter class manages the script reading and writing process. Derived from the Interpreter
class, this singleton7 has methods that use a ScriptReadWriter to open and close �le streams and to use
those streams to perform the actions required to load and save GMAT scripts. The entry point methods
that take input from the stream include the word �Interpret� in their names; the methods that launch the

7See Section B.1

Draft: Work in Progress
16.3. CLASSES USED IN SCRIPTING 147

serialization of GMAT objects and that subsequently write them out to streams use the work �Build� as part
of the method name.

The key ScriptInterpreter data members and methods are described below.

Class Attributes

• Integer logicalBlockCount: A counter that counts the logical blocks of script as they are read.

• bool inCommandMode: A �ag that is used to detect when a script switches from object parameter
mode into command mode, so that assignment blocks can be con�gured correctly.

• std::iostream scriptStream: The stream used for script reading or writing.

• ScriptReadWriter* theReadWriter: A pointer to the ScriptReadWriter used when reading or
writing the script.

Methods

• ScriptInterpreter* Instance(): The method used to obtain the pointer to the singleton.

• bool Build(): Method used to write a script to the stream. This method calls WriteScript() to
perform the actual work required when writing a script.

• bool Build(const std::string &script�le): Method used to initialize the stream to an output �le.
This method calls Build() (above) after setting up the stream.

• bool Interpret(): Method used to read a script from the stream. This method calls the protected
ReadScript() method to perform the actual script reading tasks.

• bool Interpret(const std::string &script�le): Method used to initialize the stream to an input
�le. This method calls Interpret() (above) after setting up the stream.

• void ReadScript(): The method that controls script reading. This method is called by Interpret().
The process followed in the ScriptInterpreter::ReadScript() method and the methods it calls is shown
in Figure 16.6 and the diagrams derived from it, and described in Section 16.4.

• std::string ReadLogicalBlock(): Method that obtains a logical block from teh ScriptReadWriter
for the ReadScript() method.

• void Parse(std::string &block): Method that interprets a logical block for the ReadScript() method.

• bool WriteScript(): Control method used to write a script. This protected method is called by the
Build() method when a script needs to be written. The process followed in the WriteScript() method
is shown in Figure 16.11 and described in Section 16.4.2.

16.3.1.3 The Interpreter Base Class

The Interpreter base class de�nes the interfaces into the Interpreter system, and provides functionality shared
by all GMAT Interpreters. This class contains the data structures necessary to manage data that exists at
the mission scope rather than at object scope, like header and footer comments.

Draft: Work in Progress
148 CHAPTER 16. SCRIPT READING AND WRITING

Class Attributes

• StringArray type maps: Lists of the names of classes of corresponding types of con�gurable objects.
There are separate maps for commands (commandMap), hardware components (hardwareMap),
forces (physicalmodelMap), solvers (solverMap), parameters (parameterMap), stopping condi-
tions (stopcondMap), and functions (functionMap). These arrays are populated when the Inter-
preter is initialized.

• std::string currentBlock: the current logical block of script, used while parsing.

• std::string headerComment: The optional commentary, provided by the user, that precedes all
instructions in a GMAT mission.

• std::string footerComment: The optional commentary, provided by the user, that completes all
instructions in a GMAT mission.

• TextParser theParser: A TextParser used to pieces of text.

• enum currentBlockType: An identi�er for the type of the current logical block of text, used when
reading a script.

Methods

• void Initialize(): Fills or refreshes the type maps by retrieving the lists of type names from the
Moderator.

• bool Interpret(): Retrieves input from a stream and translates it into GMAT actions. This abstract
method is implemented by all derived Interpreters.

• bool Build(): Accesses GMAT objects and writes them to a stream. This abstract method is imple-
mented by all derived Interpreters.

• void FinalPass(): Invoked after objects have been interpreted from a stream, this method sets
pointers for object references that are required outside of the Sandbox, so that required functionality
can be provided prior to initialization for a mission run. Derived Interperters should call this method
as the last call in their Interpret() methods if internal pointers are not set during execution of the
method.

• void RegisterAliases(): Some GMAT script identi�ers can be accessed using multiple text strings.
The RegisterAliases() method creates a mapping for these strings so that scripts are parsed correctly.
The current GMAT system has �ve aliased parameter strings: �PrimaryBodies� and �Gravity� are both
aliases for �GravityField� forces, �PointMasses� is an alias for `a PointMassForce, �Drag� is an alias for
a DragForce, and �SRP� is an alias for SolarRadiationPressure.

• GmatBase* FindObject(const std::string objName): Method used to �nd a con�gured object.

• void SetParameter(GmatBase *obj, const Integer id, const std::string &value): Method
used to set parameters on con�gured objects. Note that while the input value is a string, it is converted
to the correct type before being set on the object.

• ElementWrapper* CreateElementWrapper(const std::string &name): Method used to create
wrapper instances needed to use object properties, Parameters, array elements, and other types of
object data inside of the commands that implement the Mission Control Sequence. The wrapper
infrastructure is described in Section 23.4.3.

Draft: Work in Progress
16.3. CLASSES USED IN SCRIPTING 149

16.3.2 The ScriptReadWriter
File management tasks necessary to scripting are provided by the ScriptReadWriter class. This class, a
singleton, is used by the ScriptInterpreter to retrieve script data a logical block at a time and to write script
�les out on user request. It does not directly interact with GMAT objects; rather, it provides the interfaces
into the �le system that are used to store and retrieve GMAT con�gurations in the �le system.

Class Attributes
• std::string �leName: The current script name.

• std::fstream script: an std::fstream object used to read or write the script.

• Integer lineWidth: The maximum line width to use when writing a script; the default width is 0
characters, which is treated as an unlimited line width.

• bool writeGmatKeyword: A �ag used to determine if the keywork GMAT is written when a script
�le is written. This �ag defaults to true, and all assignment lines are prefaed with the GMAT keyword.
Future builds of GMAT may toggle this feature o�.

• Integer currentLineNumber: The current physical line number in the script �le.

Methods
• TextReadWriter* Instance(): Accessor used to obtain the pointer to the TextReadWriter singleton.

• void SetScriptFilename(const std::string &�lename): Sets the name of the script �le.

• std::string GetScriptFilename(): Gets the current name of the script �le.

• void SetLineWidth(Integer width): Sets the desired line width. If the input parameter is less than
20 but not 0, GMAT throws an exception stating that line widths must either be unlimited (denoted
by a value of 0) or greater than 19 characters.

• Integer GetLineWidth(): Gets the desired line width.

• Integer GetLineNumber(): Gets the line number for the last line read.

• bool OpenScriptFile(bool readMode): Opens the �le for reading or writing, based on the read
mode (true to read, false to write). This method sets the �leStream object to the correct �le, and
opens the stream.

• std::string ReadLogicalBlock(): Reads a logical block from the �le, as described below.

• bool WriteText(const std::string &textToWrite): Writes a block of text to the stream. The text
is formatted prior to this call.

• bool CloseScriptFile(): Closes the �le if it is open.

16.3.2.1 Overview of the ReadLogicalBlock() Method
The ReadLogicalBlock() method is designed to handle ASCII �les written from any supported platform �
Windows, Macintosh, or Linux � without needing to update the line ending characters. This method works
by scanning each line for CR and LF characters, and treating any such character or combination of characters
found as a physical line ending character. This process lets GMAT handle text �les on all of the supported
platforms8.

8Here's what the Computer Dictionary (http://computing-dictionary.thefreedictionary.com/CR/LF) says about the line
ending issue:

Draft: Work in Progress
150 CHAPTER 16. SCRIPT READING AND WRITING

For the purposes of the ReadLogicalBlock() method, a logical block is one or more physical lines of text
in the script �le, joined together into a single block of text. A script �le indicates that physical lines should
be connected by appending ellipsis (�...�) to indicate that a line is continued. For example, if this scripting
is found in the �le:

Propagate Synchronized prop1(MMS), ...
prop2(TDRS);

the encoded instruction that is returned is

Propagate Synchronized prop1(MMS), prop2(TDRS);

Note that the white space is preserved in this process. The ellipsis characters are replaced by a single space.

16.3.2.2 ReadLogicalBlock(): Reading Comment Lines
Comments related to speci�c GMAT objects need to be preserved when reading and writing script �les.
The comments associated with speci�c objects are considered as part of the object's logical block. Thus,
expanding on the example above, if the scripting reads

% Single step both formations
Propagate Synchronized prop1(MMS), ...

prop2(TDRS);

the logical block that is returned is two physical lines:

% Single step both formations
Propagate Synchronized prop1(MMS), prop2(TDRS);

where the line break delimits the separation between the comment prefacing the command from the text
con�guring the command object. Similarly, inline comments are preserved as part of the logical block; for
example, the following scripting

% Build the spacecraft
Create Spacecraft Indostar1 % An Indonesian GEO
% Set up a Geostationary orbit
GMAT Indostar1.SMA = 42165.0 % Geosynchronous
GMAT Indostar1.ECC = 0.0005 % Circular
GMAT Indostar1.INC = 0.05 % Nearly equatorial

produces 4 logical blocks:

1. The object creation block:

% Build the spacecraft
Create Spacecraft Indostar1 % An Indonesian GEO

2. The �rst parameter setting block, with 2 comments:

% Set up a Geostationary orbit
GMAT Indostar1.SMA = 42165.0 % Geosynchronous

(Carriage Return/Line Feed) The end of line characters used in standard PC text �les (ASCII decimal 13 10, hex
0D 0A). In the Mac, only the CR is used; in Unix, only the LF. When one considers that the computer world
could not standardize the code to use to end a simple text line, it is truly a miracle that su�cient standards were
agreed upon to support the Internet, which �ourishes only because it is a standard.

Linux follows the Unix convention. Macintosh can be switched to Unix format or native Macintosh format.

Draft: Work in Progress
16.3. CLASSES USED IN SCRIPTING 151

3. a second parameter block:

GMAT Indostar1.ECC = 0.0005 % Circular

4. and the �nal parameter block:

GMAT Indostar1.INC = 0.05 % Nearly equatorial

There are three additional types of comment blocks that the ReadLogicalBlock() method manages. These
blocks, (1) the script header, (2) the script footer, and (3) section delimiter blocks, are not associated with
speci�c GMAT objects, but rather with the script �le as a whole.

GMAT script header comments are comment lines that begin on the �rst line of the script �le, and that
are terminated by a blank line. An example, taken, with minor edits, from one of the GMAT test scripts, is
shown here:

% GMAT Script File
% GMAT Release Build 6.0, February 2006
%
% This test script uses the GMAT script language to convert from
% the Cartesian to the Keplerian state. I only implemented the
% conversion for elliptic inclined orbits, as described in the
% math spec. I didn't implement other special cases, because it
% would not test anything different in the inline math.

% Create a s/c
Create Spacecraft Sat;
...

This script snippet contains a header comment, read into the logical block

% GMAT Script File
% GMAT Release Build 6.0, February 2006
%
% This test script uses the GMAT script language to convert from
% the Cartesian to the Keplerian state. I only implemented the
% conversion for elliptic inclined orbits, as described in the
% math spec. I didn't implement other special cases, because it
% would not test anything different in the inline math.

and an object creation logical block:

% Create a s/c
Create Spacecraft Sat;

The script header comment is stored in the headerComment data member of the ScriptInterpreter. The
comment associated with the object creation logical block is stored with the associated object, as described
in the next section.

Some script �les include comments after the last executable line of the script �le. When such comments
are found, they are collected into a single logical block and stored in the ScriptInterpreter's footerComment
data member. The stored data in the header and footer comment blocks are written in the appropriate
locations when a script �le is saved using the Build() method of the ScriptInterpreter.

The �nal category of script comments, the section delimiters, are automatically generated when writing
a script �le, and ignored when reading a script. An example of a section delimiter is shown here:

Draft: Work in Progress
152 CHAPTER 16. SCRIPT READING AND WRITING

Create ImpulsiveBurn LunarPhasedV;
GMAT LunarPhasedV.Origin = Earth;
GMAT LunarPhasedV.Axes = VNB;
GMAT LunarPhasedV.VectorFormat = Cartesian;
GMAT LunarPhasedV.V = 0.027;

%--
%------------------------------ Propagators -------------------------------
%--

Create ForceModel LunarSB_ForceModel;
GMAT LunarSB_ForceModel.CentralBody = Earth;
GMAT LunarSB_ForceModel.PointMasses = { Earth, Sun, Luna};

Section delimiter comments exist on single lines, and always start with the string

%--------

with no preceding white space. When the ReadLogicalBlock() method encounters this string of characters
at the start of a physical line, the physical line is ignored.

The ScriptInterpreter takes these logical blocks from the ScriptReadWriter, and uses the TextParser class
to process each logical block. The facilities implemented in the TextParser and used for this processing are
described next.

16.3.3 The TextParser Class
The ScriptReadWriter provides the interface to script �les, and includes a method, ReadLogicalBlock(),
that accesses a script �le and reads it one logical block at a time. The ScriptInterpreter uses this method
to obtain each logical block of text from a script. When ReadLogicalBlock() returns a script block, the
ScriptInterpreter begins a process of breaking the block into pieces until the entire block has been consumed
and interpreted into internal GMAT data structures. The ScriptInterpreter uses the TextParser to perform
this decomposition.

The TextParser class is used to process logical blocks of script, breaking them into their constituent parts
so that the Interpreters and Commands can setup the underlying class relationships and parameter values
needed to model the mission described in the script �le.

The TextParser class provides methods used by the ScriptIntererpter to iteratively decompose a logical
block of text. This class supplies all of the low level parsing functionality necessary to manage script lines,
and is used both by the ScriptInterpreter and by other classes � notably commands that are too complex to
be treated generically. The TextParser does not parse inline mathematics; when inline math is detected by
the ScriptInterpreter, it hands the parsing task o� to the MathParser, described in Chapter 26.

Class Attributes

• std::string prefaceComment: All comment lines that precede the instruction in the current block
of text. This member is the empty string if there are no comment lines preceding the instruction.

• std::string inlineComment: Any comment text that is appended to the instruction. This member
is the empty string if there is no comment lines following the instruction.

• std::string theInstruction: The text that is decomposed to tell GMAT what to do.

• StringArray commandList: The list of available commands, excluding the GMAT keyword, which
is used for assignments.

Draft: Work in Progress
16.3. CLASSES USED IN SCRIPTING 153

Methods

• void Initialize(const StringArray &commandList): Method that sets up the internal data for the
TextParser. The parser's owner calls this method during construction, identifying all of the commands
available to the parser in the current scope.

• Gmat::LineType EvaluateBlock(const std::string &block): The method that takes a logical
block and breaks it into three pieces: preface comments, the instruction in the block, and inline
comments. These pieces are stored in internal TextParser data members until needed by the ScriptIn-
terpreter. The method returns the type of block found, using these rules:

1. If theInstruction is empty, the block is a COMMENT_BLOCK, otherwise
2. If theInstruction has the word �Create� as the opening word, it is a DEFINITION_BLOCK,

otherwise
3. If theInstruction has a member of the commandList as the opening word, it is a COMMAND_BLOCK,

otherwise
4. The line is an ASSIGNMENT_BLOCK9.

• StringArray ChunkLine(): Breaks the instruction string into logical groups, called �chunks� in this
document. The instruction line is broken at white space and comma characters. Blocks marked with
the grouping delimiters (), {}, and [] are kept together as independent chunks.

• StringArray Decompose(std::string chunk): Breaks a text chunk into its constituent pieces, and
returns them in a StringArray. This method is used to take a chunk from the ChunkLine() method,
and break it into substrings. Decompose calls into the Separate methods described below, looking �rst
for brackets to break apart, then commas and spaces, and �nally periods.

• StringArray SeparateBrackets(const std::string &text, const char bracket): Finds the text
in a bracket grouping, and separates it into its constituent pieces. These pieces are returned in a
StringArray. The �rst element of the array is the opening bracket, and the last element is the closing
bracket.

text: The string that contains the bracketed text.
bracket: The opening bracket type; this is one of the following characters: '(', '{', '[', or '<'.

• StringArray SeparateSpaces(const std::string chunk): Separates the chunk into pieces at whites-
pace and comma characters.

• StringArray SeparateDots(const std::string chunk): Separates the chunk into pieces at period
(aka �dot�) characters.

• std::string GetPrefaceComment(): Accessor method used to get the preface comment from the
logical block. If no preface was available, the method returns the empty string.

• std::string GetInlineComment(): Accessor method used to get the inline comment from the logical
block. If no inline comment was available, the method returns the empty string.

• std::string GetInstruction(): Accessor method used to get the instruction from the logical block.
If no instruction was available, the method returns the empty string.

• void Reset()): Clears the internal data in the TextParser.
9Note that identifying a line as an assignment line means that it will be used either to set an internal object parameter or

to build an Assignment command in the mission sequence.

Draft: Work in Progress
154 CHAPTER 16. SCRIPT READING AND WRITING

16.4 Call Sequencing for Script Reading and Writing
The class descriptions described above provide a static picture of the components used to con�gure GMAT
to run a script and to save a script for later use. In this section, the sequence followed for script reading and
writing is presented to show how the structures and methods described for the classes interact with GMAT.

16.4.1 Script Reading Call Sequence
Script reading is the process through which the instructions in a script are translated into internal object
con�guration in GMAT. This process is, of necessity, rather complicated. However, the division of the types
of lines that a script can contain into four sets: comment blocks, object de�nition blocks, command blocks,
and assignment blocks, makes it possible to break the process into more manageable pieces. Accordingly,
this section provides a top level look at the process followed when reading a script, followed by a description
of the sequence executed for each type of logical block.

16.4.1.1 Process Followed for All Logical Blocks.
When the ScriptInterpreter is instructed to read a script, it performs some basic initialization in preparation
for a new script �le. The headerComment and footerComment bata members are set to empty strings, the
logicalBlockCount data member is set to zero, the the TextParser owned by the ScriptInterpreter is reset to
prevent inadvertent use of data from a previous script. Once these preliminary actions are completed, the
script can be read.

Figure 16.6 shows the sequence followed when the ScriptInterpreter reads a script. The ScriptInterpreter
sends the ScriptReadWriter the name of the script that needs to be read, and then requests that the script
be opened for reading. If these commands succeed, the ScriptInterpreter uses the ScriptReadWriter to read
the �le, one logical block at a time.

The ScriptInterpreter calls the TextParser::EvaluateBlock method with each block of script that it receives
from the ScriptReadWriter. That method breaks the logical block into three pieces: the comment lines that
precede the instruction in the block, the instruction that needs to be interpreted to con�gure GMAT, and
any inline comments that appear in the block. The TextParser examines the instruction portion of the block
to determine what type of instruction is encoded in the block, and returns the type information using the
LineType enumeration from the Gmat namespace.

The ScriptInterpeter then initiates actions that translate the block into components used to setup the
script instructions, based on the type of block that was detected. The process foloowed for the four possible
types of script line are detailed in the sections that follow this one, and illustrated in Figures 16.7 � 16.10.

Once the ScriptInterpreter has processed all of the blocks from a script, it instructs the ScriptReadWriter
to close the script. The ScriptInterpreter then executes a �nal pass through the objects in the current
con�guration, setting a minimal set of object cross references that are required to make GMAT's GUI
functional. When this �nal pass has been performed, control is returned to the Moderator with all of the
instructions encoded in the script translated into GMAT objects.

The following paragraphs describe the details executed when translating each of the types of logical blocks
that GMAT scripts use.

16.4.1.2 Comment Blocks
The only time the ScriptReadWriter returns a comment block � that is, a block of script that has no
instructions, and consists only of comments � is when the block is either the header comment for the script
or the footer comment for the script. Script �les do not necessarily have either of these blocks. The
ScriptInterpreter maintains an internal counter tht it uses to count the logical blocks as they are read from
the �le. If that counter is zero and a comment block is found, then the block is the header comment;
otherwise it is the footer comment. Figure 16.7 shows this sequence.

Draft: Work in Progress
16.4. CALL SEQUENCING FOR SCRIPT READING AND WRITING 155

Figure 16.6: Overview of Interpreter Class Interactions when Reading a Script

Draft: Work in Progress
156 CHAPTER 16. SCRIPT READING AND WRITING

Figure 16.7: Interpreter Class Interactions when Reading a Comment Block

16.4.1.3 Object De�nition Blocks
�Create� lines an a script �le invoke object de�nition instructions, which are processed following the sequence
shown in Figure 16.8. These instructions instantiate the user con�gurable objects that are used to model a
mission.

When the TextParser tells the ScriptInterpreter that an object de�nition block has been detected, the
ScriptInterpreter asks the TextParser to break the instruction in the block into smaller pieces, referred to as
chunks. The text parser breaks the instruction at each white space or comma character in the instruction, and
places these pieces, in order, into a StringArray, referred to here as the �chunkArray.� Once the instruction
has been broken into chunks, the chunkArray is returned to the ScriptInterpreter for processing.

Object de�nition instructions all have the format

Create <ObjectType> <Name1>[, <Name 2>, ...]

where ObjectType is a string identifying what type of object is desired � examples are a Spacecraft, a
ForceModel, a Propagator, an Array, and so on. The instruction has one or more object names; one object
will be created for each name found in the instruction. Object names start at the third element in the
chunkArray, chunkArray[2]. If the size of the chunkArray is less than 3, the ScriptInterpreter throws an
exception stating that no object name was found in the object de�nition line.

The object names in the instruction text are separated by commas, white space, or both. The Array
object type has, in addition, a block specifying the array's dimensions, contained in square brackets. The
array dimensions are written to a separate chunk in the chunkArray, starting from the opening square bracket
(�[�) and ending with the closing bracket (�]�), when the instruction is broken into pieces.

Draft: Work in Progress
16.4. CALL SEQUENCING FOR SCRIPT READING AND WRITING 157

Figure 16.8: Interpreter Class Interactions when Reading an Object De�nition Block

Draft: Work in Progress
158 CHAPTER 16. SCRIPT READING AND WRITING

Once the instruction has been broken into chunks, the ScriptInterpreter starts to loop through the list of
object names found in the chunkArray. For each object name, it calls the Moderator to create an instance
of the object. The Moderator returns a pointer to the new object, which the ScriptInterpreter checks. If
the pointer is NULL, the ScriptInterpreter throws an exception stating that a requested object could not
be created. This exception includes the name of the object, the object type, and the text of the instruction
that attempted to create the object. If the returned pointer was not NULL, the ScriptInterpreter continues
processing.

If the object created was an Array, the ScriptInterpreter takes the next chunk from the chunkArray, and
asks the TextParser to break the bracketed dimensions apart. These dimensions are then passed into the
new Array object to set the number of rows and columns for the array.

Finally, the ScriptInterpreter sets the comment strings for the new object by accessing the preface and
inline pieces in the TextParser, and passing those pieces into the object. This completes the con�guration of
the object, so the ScriptInterpreter requests the next name from the chunkArray. It then repeats the process
until all of the named objects have been created.

16.4.1.4 Command Blocks
The time ordered sequence of events executed when GMAT runs a mission sequence are encoded in commands
� objects that instantiate the classes derived from the GmatCommand class, as described in Chapter 23.
Figure 16.9 shows the sequence of events that is followed by the Script Interpreter when a command is con�g-
ured. The �rst command detected by the script interpreter toggles the ScriptInterpreter's inCommandMode
�ag on, and sets the �ag in the ScriptReadWriter so that all subsequent assignment blocks are treated as
Assignment commands.

When a command is detected and set for con�guration, the ScriptInterpreter calls the Moderator and
asks for an instance of the command. It then sets the generating string on the command. Some commands
parse the generating string internally, using the bool InterpretAction() method. Commands that use this
method create an instance of the TextParser, and use its public methods to decompose the string into its
constituent pieces. An example of this type of command is the Propagate command, which has a generating
string that can consist of many di�erent options. The complexity of the command makes it di�cult to handle
in a generic fashion in the ScriptInterpreter; hence it provides the parsing service internally. Commands that
perform internal parsing return a value of �true� from the call to InterpretAction; those that expect to be
con�gured by the ScriptInterpreter return �false.�

If the command is not parsed internally, the instruction line is broken into chunks, using the cams call
as performed for object de�nition. The resulting chunks are the command components needed to con�gure
the command. The instruction components embedded in a GMAT command line typically exist in one of
several di�erent forms:

1. Stand alone commands. Some commands take no parameters at all, and are simply added to the
command list unadorned. An example of this type of command is the EndTarget command, which
identi�es the end of a targeting loop.

2. Lists of referenced objects, separated by white space or commas. An example of this type of command
is the Save command, which has the format

Save <objectName>

When a Save command is encountered, the name of the object is passed to the command using the
SetReferenceObjectName()) method.

3. Lists of parameters, separated by white space or commas. An example of this type of command is the
Report command, which has the format

Report reportObject parameter1 parameter2 ...

Draft: Work in Progress
16.4. CALL SEQUENCING FOR SCRIPT READING AND WRITING 159

Figure 16.9: Interpreter Class Interactions when Reading a Command Block

Draft: Work in Progress
160 CHAPTER 16. SCRIPT READING AND WRITING

When a Report command is encountered, the name of the items in the list are passed to the command
using the SetRefObject() method. The command validate teh �rst object as a ReportFile instance,
and the subsequent objects as parameters.

4. Objects with references. Some commands identify objects that have associated objects. An example
of this type of command is the BeginFiniteBurn command, which has the format

BeginFiniteBurn <burnName>(<spacecraftName>)

The objects identi�ed on this line are accessed from the Moderator, and passed into the command as
reference objects.

Once these components have been set on the command, the ScriptInterpreter sets the comment strings
for the new object by accessing the preface and inline pieces in the TextParser, and passing those pieces into
the object. This completes the con�guration of the command, so the ScriptInterpreter requests the next
name from the chunkArray. It then repeats the process until all of the named objects have been created.

16.4.1.5 Assignment Blocks
All logical blocks that are not comment blocks, object de�nitions, or commands are assignment blocks10.
Processing for these blocks is shown in Figure 16.10. The result of parsing an assignment block can be either
a changed value in a con�gured object or a new command inserted into the mission sequence, depending on
the setting of the inCommandMode �ag. If the assignment line includes a function call or inline mathematics,
the ScriptInterpreter automatically switches into command mode and an appropriate command is created.

All assignment lines consist of an object identi�er, and an optional equals sign followed by a right side
expression (typically referred to as the �right hand side�, or RHS). The only assignment lines that are missing
the equals sign are function calls, which execute a CallFunction command. Assignment lines fall into the
following categories:

1. Object properties. Object property assignments are used to set the internal data on con�gured objects.
Object properties can be set to constant values, the current values of variables, or the value of an array
element.

2. Objects. Objects can be set equal to other objects of the same type. When this form of assignment is
used, the Copy() method of the object on the left side of the assignment is called with the object on
the right as the input parameter.

3. Function calls. Function call lines are used to execute GmatFunctions and MatlabFunctions.

4. Mathematics. Scripted mathematics, as described in Chapter 26, are also managed on assignment
lines.

Figure 16.10 shows the sequence of function calls required to interpret assignment lines. The command
con�gurations segments, shown in green on the �gure, execute the sequence described in the preceding section
and shown on Figure 16.9.

16.4.2 Script Writing Call Sequence
The script writing process is considerably simpler than the reading process because all of the objects that
need to be written to script already exist and are con�gured to meet the user's needs. Figure 16.11 shows
the interactions performed between the GMAT classes when a script is written.

10Assignment lines in the current scripting for GMAT all start with the text string �GMAT�. Since the ScriptInterpreter
treats assignment lines last in the parsing sequence, this string is now optional, though recommended for any scripts that will
be read in MATLAB to avoid confusing that system.

Draft: Work in Progress
16.4. CALL SEQUENCING FOR SCRIPT READING AND WRITING 161

Figure 16.10: Interpreter Class Interactions when Reading an Assignment Block

Draft: Work in Progress
162 CHAPTER 16. SCRIPT READING AND WRITING

Figure 16.11: Calls Made when Writing a Script

Draft: Work in Progress
16.5. INTERPRETING GMAT FUNCTIONS 163

A script writing sequence is initiated then the Moderator calls the Build(std::string nameOfFile) method
on the ScriptInterrpeter. If the nameOfFile parameter in the Build() call is not the empty string, then the
ScriptInterpreter sets the script �le name on the ScriptReadWriter to the name passed in with the call. Next
the script is opened as an output stream. The header comment is written to the stream, followed by any
global model information contained in the current GMAT run11.

After all of these preliminary data have been written, the ScriptInterpreter writes the con�gured objects
stored in the Con�gurationManager to the script stream. These con�gured objects are accessed by type, so
that the resulting script presents the objects in sections based on the object type. The ScriptInterpreter calls
the Moderator to get the list of objects by type. If the list is empty for a given type, the ScriptInterpreter
skips to the next type. Each block of objects is prefaced by a section delimiter comment (as shown above).
The section delimiters are generated internally in the ScriptInterpreter when it determines that there is an
object of a speci�ed type that needs to be written.

Con�gured objects are written in the following order: spacecraft, hardware, formations, force models,
propagators, Burns, variables and arrays, coordinate systems, solvers, subscribers (plots, views and reports),
and functions. Each con�gured object supplies its own serialized description, encoded in an std::string. This
string is accessed using the object's GetGeneratingString() method; the ScriptInterpreter calls GetGenerat-
ingString, and sends the resulting string to the ScriptReadWriter, which writes it to the script stream.

Once all of the con�gured objects have been written to the output stream, the ScriptInterpreter sends
the block delimiter for the mission sequence to the ScriptReadWriter. The ScriptInterpreter then accesses
the starting command in the mission sequence by calling the GetNextCommand() method on the Moderator.
Since the command sequence is a linked list of GmatCommand objects, the ScriptInterpreter no longer needs
to access the Moderator for command information. It sets an internal pointer to the �rst command in the list.
This pointer, the current command pointer, is used to call GetGeneratingString() on that command. The
returned string is passed to the ScriptReadWriter, which writes it to the script stream. The ScriptInterpreter
then accesses the next command in the sequence by calling the Next() method. This process repeats as long
as the pointer returned from the call to Next() is not NULL.

BranchCommands automatically include the string data for their branches when their GetGenerat-
ingString() method is called. The ScriptInterpreter does not have any special code that needs to be run
when a BranchCommand appears in the command sequence.

Once all of the commands in the command sequence have been written to the script stream, the Script-
Interpreter sends the footer comment to the TextReadWriter, which writes out the footer com ment. The
ScriptInterpreter then tell the ScriptReadWriter to close the script stream, completing the script write func-
tion.

16.5 Interpreting GMAT Functions
GMAT scripting includes the ability to load and run smaller blocks of script using the GmatFunction class
described in Section 27.2. This functionality is managed and driven by the CallFunction command and the
GmatFunction class. The Interpreter subsystem provides a public base class method,

Interpreter::InterpretSubsequence(GmatFunction *function),

that builds the control sequence for the GmatFunction. This section describes how that method works.
Figure 16.12 shows the basic �ow followed in this process.

<Text to be completed.>

11The global information currently consists of the �ags used by the SolarSystem to control the update intervals for planetary
positions and the Earth nutation matrix. The Moderator call, GetGlobalItemText(), listed here returns the result of calling
GetGeneratingString on the current SolarSystem. This method needs to be added to the Moderator.

Draft: Work in Progress
164 CHAPTER 16. SCRIPT READING AND WRITING

Figure 16.12: Interpreting a Function Control Sequence

Draft: Work in Progress

Chapter 17

The Graphical User Interface

???
???

I'm not sure yet how to structure this piece...

17.1 wxWidgets
17.2 GmatDialogs
17.3 The Interpreter Classes
This section may need to be in a separate (short) chapter.

165

Draft: Work in Progress
166 CHAPTER 17. THE GRAPHICAL USER INTERFACE

Draft: Work in Progress

Chapter 18

External Interfaces

???
???

GMAT can be driven from the MATLAB environment, using the design presented in this chapter. More to
be written later.

18.1 The MATLAB Interface
18.2 GMAT Ephemeris Files

167

Draft: Work in Progress
168 CHAPTER 18. EXTERNAL INTERFACES

Draft: Work in Progress

Chapter 19

Calculated Parameters and Stopping
Conditions

Linda O. Jun
Goddard Space Flight Center

Darrel J. Conway
Thinking Systems, Inc.

GMAT contains classes designed to perform numerous data calculations applicable to the analysis of
spacecraft trajectories, orientations, and mission goals. These calculations are performed by the Parameter
class hierarchy. This chapter describes, in some detail, the design of these Parameter classes.

The Parameter classes can be used in conjunction with the propagators to perform precision propagation,
enabling the ability to stop on calculated values provided by the Parameter objects. Section 19.2 provides
a description of the stopping condition classes. Stopping conditions are used by the Propagate command,
described in Section 24.2.2.

19.1 Parameters
�To be completed.�

19.2 Stopping Conditions and Interpolators
Propagation in GMAT is described in Section 24.2.2. The propagation algorthme described there include
descriptions about stopping at speci�c locations on a SpaceObject's trajectory, and include a discussion of
the use of interpolators for these stopping points. The parameters and interpolators used for stopping are
encapsulated in the stopping condition classes and interpolator classes shown in Figure 19.1. These classes
are described in the following sections.

19.2.1 Stopping Conditions
Stopping conditions are implemented in two classes, as shown in the �gure. These classes are described
below.

Note: These sections need to be �lled in. There will be some updates as implementation of the Propagate
updates proceed.

169

Draft: Work in Progress
170 CHAPTER 19. CALCULATED PARAMETERS AND STOPPING CONDITIONS

Figure 19.1: Stopping Condition Classes

19.2.1.1 The BaseStopCondition Class
Methods

• bool Initialize()

• virtual bool Evaluate() = 0

• virtual bool IsTimeCondition() = 0

• virtual void AddToBu�er(bool isInitialPoint) = 0

• bool Validate()

• void Reset()

• Real GetStopInterval()

• Integer GetBu�erSize()

• Real GetStopEpoch()

19.2.1.2 The StopCondition Class
Methods

• virtual bool Evaluate()

Draft: Work in Progress
19.2. STOPPING CONDITIONS AND INTERPOLATORS 171

• virtual bool IsTimeCondition()
• virtual void AddToBu�er(bool isInitialPoint)
• Real GetStopEpoch()
• GmatBase Clone()

19.2.2 Interpolators
GMAT implements interpolators using a framework implemented in the Interpolator base class. Each derived
class uses the Interpolator data structures and methods that implement the data bu�ers, add points to them,
clear the bu�ers, and provide bu�er size information. The base class provides the interface to the call to
obtain interpolated data as an abstract method, Interpolate().

19.2.2.1 The Interpolator Class
Interpolator is the base class for all GMAT interpolators. It implements the data storage and access functions
needed by interpolation routines, and provide the facilities needed to store and access the data in a ring
bu�er sized to match the interpolation algorithm.

Class Attributes
• Real* independent: The array of independent data used for interpolation.

• Real** dependent: The dependent data arrays used for interpolation.

Methods
• bool AddPoint(Real ind, Real* date): Adds independent and dependent data to the arrays of

data elements. The data is stores in these arrays using a ring bu�er allocation, so that data does not
need to be copied when the number of points in the bu�er exceeds the allocated array sizes. Instead
the new data overwrites the oldest values in the arrays.

• void Clear(): Resets teh rind bu�er pointers, so that the bu�ers appear to be empty on their next
use.

• Integer GetBu�erSize(): Returns the number of data points that can be stored in the ring bu�er.

• virtual bool Interpolate(Real ind, Real* results) = 0: The abstract method that gets overridden
to implement speci�c interpolation algorithms.

19.2.2.2 The Linear, Cubic Spline, and Not-a-Knot Interpolators
GMAT implements three interpolators: a linear interpolator, a standard cubic spline interpolator using the
algorithm described in [NRecipes], and the not-a-knot algorithm described in [MathSpec]. These classes
implement two class speci�c methods:

Methods
• GmatBase* Clone(): Calls the class's copy constructor to make an exact copy of the interpolator.

• virtual bool Interpolate(Real ind, Real* results): Implements the speci�c interpolation algo-
rithm used by the interpolator.

The Clone method behaves as in all other GmatBase subclasses. The Interpolate() methods implement the
interpolator speci�c algorithms, as described in the references.

Draft: Work in Progress
172 CHAPTER 19. CALCULATED PARAMETERS AND STOPPING CONDITIONS

Draft: Work in Progress

Chapter 20

Propagators = Integrators + Forces

Darrel J. Conway
Thinking Systems, Inc.

20.1 Propagator Overview
20.1.1 The Equations of Motion
20.1.2 Division of Labor: Integrators and Forces

20.2 Integrators
20.3 The GMAT Force Model
20.3.1 The PhysicalModel Class
20.3.2 The ForceModel Class
20.3.2.1 Adding and Removing Forces

20.3.3 Applying Forces to Spacecraft

20.4 The State Vector
20.5 The PropSetup Container

173

Draft: Work in Progress
174 CHAPTER 20. PROPAGATORS = INTEGRATORS + FORCES

Draft: Work in Progress

Chapter 21

Force Modeling in GMAT

Darrel J. Conway
Thinking Systems, Inc.

Chapter 20 describes GMAT's propagation subsystem, and introduced the force model components used
to perform precision propagation. This chapter describes the implementation of individual components of
the force model.

21.1 Component Forces
21.1.1 Gravity from Point Masses

apm = − µ

r3
~r (21.1)

21.1.2 Aspherical Gravity
21.1.3 Solar Radiation Pressure

aSRP = −P¯CR
R2

AU

R2¯

A

m

~r¯
r3¯

(21.2)

21.1.4 Atmospheric Drag

adrag = −1
2

CdA

m
ρv2

rel

~vrel

vrel
(21.3)

21.1.5 Engine Thrust

175

Draft: Work in Progress
176 CHAPTER 21. FORCE MODELING IN GMAT

Draft: Work in Progress

Chapter 22

Maneuver Models

Darrel J. Conway
Thinking Systems, Inc.

177

Draft: Work in Progress
178 CHAPTER 22. MANEUVER MODELS

Draft: Work in Progress

Chapter 23

Mission Control Sequence Commands

Darrel J. Conway
Thinking Systems, Inc.

23.1 Command Overview
Users model the evolution of spacecraft over time in GMAT using a mission control sequence that consists of
a series of commands. These commands are used to propagate the spacecraft, model impulsive maneuvers,
turn thrusters on and o�, make decisions about how the mission should evolve, tune parameters, and perform
other tasks required to perform mission analysis. This chapter describes the core components of the system
that implement this functionality. Chapter 24 provides a more in depth examination of the speci�c commands
implemented in GMAT, providing details about the implementation of each.

23.2 Structure of the Sequence
The mission control sequence is designed to present users with a con�gurable, �exible mechanism for control-
ling the GMAT model. Commands may manipulate modeled components, control model visualization and
other output data, determine the order of subsequent operations through looping or branching, tune param-
eters to meet mission criteria, or group commands together to be executed as a single block. Each GMAT
Sandbox is assigned its own mission control sequence1. This design feature drives the late binding features
of objects in the GMAT Sandbox (see Section 5.2.2), which, in turn, places demands for late binding support
on the GMAT commands. The following paragraphs provide an overview of these features. Implementation
details are described later in the chapter.

23.2.1 Command Categories
GMAT commands can be broken into four distinct categories: �Regular� commands, Control Logic com-
mands, Solver commands, and Function commands, as described here.

Regular commands are commands that perform a single, isolated operation and do not depend on any
other command to operate. Examples of the regular command are the Propagate command and the Maneuver
command. The regular commands can appear anywhere in the Mission Control Sequence.

1While the current implementation of GMAT has a single Sandbox, GMAT is designed to support multiple sandboxes.

179

Draft: Work in Progress
180 CHAPTER 23. MISSION CONTROL SEQUENCE COMMANDS

Control Logic commands are used to perform control �ow operations in the Mission Control Sequence.
Each control logic command controls a list of commands � called the command subsequence � that is executed
by the control logic command when that command determines that execution is needed. All control logic
commands are paired with a matching End command. The End commands identify the end of the command
subsequence controlled by the control logic command.

GMAT supports three control logic commands: If, While and For, which are paired with the commands
EndIf, EndWhile and EndFor. For commands are used to iterate over the subsequence for a �xed number
of iterations. If commands provide a mechanism to fork the Mission Control Sequence based on conditions
detected during execution. While commands are used to iterate over the command subsequence until some
condition is met.

Solver commands are similar to control logic commands in that they manage a command subsequence
and use that subsequence to explore how changes in parameters a�ect the results of executing the subse-
quence. GMAT has three classes of solver commands: Targeters, Optimizers, and Iterators. Targeters adjust
parameters in order to meet a speci�c set of goals. Optimizers also adjust parameters, in order to �nd the
set that optimizes a problem objective. Iterators are used to observe the results of changes to parameters,
so that the statistical behavior or the solution space of the subsequence can be measured and recorded.

One key di�erence between solver commands and control logic commands is that for the control logic
commands, the changes to the spacecraft and other mission components applied during a subsequence run
a�ect subsequent runs of the subsequence. Solvers reset the spacecraft states from one iteration to the next,
so that the e�ect of changes to the input parameters are applied to the same set of initial conditions from
one iteration of the subsequence to the next.

Functions are used in GMAT to generalize common tasks, to communicate with MATLAB, and to en-
capsulate multistep tasks into a single call in a mission. The function subsystem design will be documented
at a later date.

23.2.2 Command Sequence Structure
The mission control sequence is implemented as a linked list of command objects. The sequence is constructed
from a script by appending links to the list as they are constructed by the script interpreter. Commands that
control subsequences build the subsequences by managing a child linked list. The child list is constructed
by appending links until the related subsequence termination command is encountered, terminating the
subsequence list.

Users can also interact with the command sequence from the GMAT GUI; these interactions let users
append commands to the sequence, insert commands at intermediate points, and remove commands. Users
view the sequence as a hierarchical tree, as shown in Figure 23.1. The mission is modeled by executing the
commands in the linked list sequentially. The mission tree shown on the GUI provides a graphical view
into the linked list, including the command subsequences for commands that control subsequences. The top
node in the tree is the the �rst link in the list; in the �gure, that node is a Propagate command, labeled
Propagate1 on the mission tree. The entire linked list consists of seven nodes: Propagate - Propagate -
Target - Propagate - Propagate - Target - Propagate. Each of the target nodes controls a subsequence used
in the targeting process. The �rst of these nodes is expanded in the �gure to show the subsequence. For
this example, the subsequence consists of �ve links: Vary - Maneuver - Propagate - Achieve - EndTarget.

Rework this piece � it's not currently used GMAT does not restrict the depth of the nesting levels
for the commands that control subsequences. The command classes include a counter that monitors the
current nesting level in the command sequence. The nesting level is set when the command is added to the
linked list. The main command sequence has a nesting level of 0. Subsequences o� of the main sequence
increment the level to 1; subsequences contained in these subsequences have a nesting level of 2, and so forth.
The subsequence termmination commands, typically identi�ed by an �End� pre�x, have a nesting level set

Draft: Work in Progress
23.3. THE COMMAND BASE CLASSES 181

Figure 23.1: GMAT Command Sequence in the GUI

to the same level as the rest of the subsequence, because they are the last command in the subsequence, and
therefore exist at the subsequence level.

23.2.3 Command�Sandbox Interactions
When a mission control sequence is run, all of the con�gured objects used in the run are copied from the
Con�guration Manager into the Sandbox used for the run. These copies are place into a standard template
library (STL) map matching the object names to pointers to the local copies in the Sandbox. These pointers
need to be bound to the commands prior to execution of the mission control sequence. This late binding is
performed during the initialization phase described below. Additional details about the late bindign strategy
implemented in GMAT can be found in Section 5.2.2.

During mission control sequence execution, the commands interact with the object copies to model the
interactions dictated for the model, as described in the execution section below. These interactions change the
local copies, modeling the evolution of the system. Once the command sequence completes execution (either
by �nishing the sequence, encountering a �Stop� command, or detecting a user generated stop event), each
GMAT command is given the opportunity to complete any pending operations. This �nal step, described
in the Finalization section below, is used to close open �le handles, clean up temporarily allocated memory,
and perform any other housekeeping tasks needed to maintain the mission control sequence for subsequent
user actions.

23.3 The Command Base Classes
Figure 23.2 shows core properties of the base classes used in the Command subsystem. The top level
base class, GmatCommand, provides linked list interfaces and methods used to parse command scripts.
BranchCommand adds capabilities to implement and execute commands that run subsequences � speci�cally,
the Control Logic, Solver, and Function categories of commands. Additional capabilities required by the
Control Logic commands are provided by the ConditionalBranch class. Capabilities shared by all Solvers
are implemented in the SolverBranchCommand class.

23.3.1 List Interfaces
To be �lled in

Draft: Work in Progress
182 CHAPTER 23. MISSION CONTROL SEQUENCE COMMANDS

Figure 23.2: Base Classes in the Command Subsystem

Draft: Work in Progress
23.4. SCRIPT INTERFACES 183

23.3.2 Object Interfaces
To be �lled in

23.3.3 Other Interfaces
To be �lled in

23.4 Script Interfaces
The standard script syntax for a command is the command name followed by zero or more text strings
separated by white space. Commands that are scripted using this syntax are handled generically in the
Interpreter subsystem, as described in Chapter 162. Commands that use more complex scripting than a
simple list of elements manage their own parsing in a customized implementation of the InterpretAction()
method. This section describes the command base class structures and methods that are used by commands
that override InterpretAction() and parse their con�gurations internally. Parsing for Commands that do not
override the InterpretAction() method is handled in the ScriptInterpreter. The methods described in the
following text are not used by those Commands.

23.4.1 Data Elements in Commands
Commands can be scripted to describe the actions taken on elements of the model (i.e. objects instantiating
GMAT classes), or to manipulate speci�c data elements of these objects based on the rules encoded into the
command. When performing the latter task, the speci�c data element is accessed using an ElementWrapper
helper object that can manipulate data represented by the following types: numbers, object properties,
variables, array elements, and Parameter objects. In addition, commands may be construsted in the future
that operate on Array objects and strings; the infrastructure needed for these objects is included in the
wrapper enumerations, but not yet implemented.

The data wrappers are described in Section 23.4.33. These wrappers are designed to be used by commands
when needed to handle single valued Real data elements in the commands. The Gmat namespace includes
an enumeration, WrapperDataType, with entries for each of the supported data types. This enumeration
is described in Section 9.5.2. The data wrappers are used to standardize the interface to numbers, object
properties, variables, array elements, and other Parameter objects to perform the command operations.
Arrays and Strings are handled separately by the commands � arrays, because they can have more than one
value, and strings, because they do not provide Real number data for use in the commands.

Figure 23.3 shows an overview of the process used to build and validate commands encountered in scripts
and on the GUI. The portions of the digram colored orange are performed through calls launched by the
ScriptInterpreter. Commands created from the GUI follow the procedure shown in purple. In both cases,
once the command has been built and the early binding data has been set, the command is validated using
methods provided by the Interpreter base class. The calls made for this validation include calls that build
the ElementWrapper members used in the command. These calls are shown in the �gure in blue.

The process shown in Figure 23.3 must be performed before the mission control sequence can be executed
in a Sandbox. That includes identifying all of the names of con�gured objects that the sequence will need,
creation of any Parameters (performed in the CheckUnde�nedReference method) that will be required, and
creation of the DataWrappers that will need to be populated during Initialization in the Sandbox.

THe following subsections describe the support methods provided by the Interpreter and GUI subsystems
to con�gure the command objects. These paragraphs are separated to match the three sections of Figure 23.3.

2Some commands that do not follow this generic description are also handled in the Interpreters at this writing.
3The ElementWrappers use the Adapter design pattern, described in B.5

Draft: Work in Progress
184 CHAPTER 23. MISSION CONTROL SEQUENCE COMMANDS

Figure 23.3: Calls Made in the Interpreters to Build and Validate Commands. Speci�c calls to the command
are prefaced on this diagram with the C++ pointer notation, �cmd->�.

23.4.1.1 Scripted Command Con�guration: Interpreter Support
Scripted commands are con�gured using the Interpreter::CreateCommand method called from the ScriptIn-
terpreter while parsing a script. The parsing process followed for commands is described at a high level in
Section 16.4.1.4. The Interpreter base class provides several methods that facilitate that process, described
here:

• GmatCommand* CreateCommand(const std::string &type, const std::string &desc, bool
&retFlag, GmatCommand *inCmd = NULL): The method that drives the command creation
process for the ScriptInterpreter. This method takes the generating string for the command as found
in the script, and creates an instance of the corresponding GmatCommand object. It then calls
InterpretAction() on the command; if that call fails, it calls the Interpreter's AssembleCommand
method. Finally, it builds any wrappers needed by the command, and validates that referenced objects
used in the command have been created.

• bool AssembleCommand(GmatCommand *cmd, const std::string &desc): Commands that
are not internally parsed are con�gured in this method.

Once this step has been completed, the command has been created and strings have been set decribing
all objects and data wrappers referenced by the command. The data wrappers are not yet created; thaqt
process is described after the next subsection.

Draft: Work in Progress
23.4. SCRIPT INTERFACES 185

23.4.1.2 Command Con�guration in the GUI
The GMAT GUI con�gures commands directly, based on the entries made by a user on the GUI panel
corresponding to the command. Commands are created when a user inserts them into the mission control
sequence, con�gured with default settings. When a user opens the con�guration panel, makes changes, and
then applies the changes using either the Apply of OK button, the panel calls an internal method, �SaveData�,
which passes the data on the panel to the command object.

The data passed into the object identi�es all of teh objects referenced by the command. Commands
con�gured by the GUI typically get populated with valid descriptors; as we will see shortly, the validation is
repeated after the data wrappers are built, as described in teh next section. All data that requires wrappers
is passed into the command as an std::string, using the SetStringParameter method. The command stores
these data for use contructing the wrappers.

23.4.1.3 Interpreter Support for Wrappers and Validation
Once GMAT has completed the steps described above, the command is con�gured with strings describing
wrappers and referenced objects, along with any other command speci�c data needed to fully con�gure the
command. The �nal steps used con�guring the command are shown in blue on Figure 23.3. These steps are
all encapsulated in the Interpreter method ValidateCommand. The methods in the Interpreter base class
used for wrapper construction and validation are provided here:

• void ValidateCommand(GmatCommand *cmd): The method that executes the steps shown in
blue on the �gure. This method is called directly from the GUI, and as the �nal piece of CreateCom-
mand from the ScriptInterpreter.

• ElementWrapper* CreateElementWrapper(const std::string &description): This method
takes the descripion of a wrapper object and builds the corresponding wrapper.

• bool CheckUnde�nedReference(GmatBase *obj, bool writeLine = true): Method used to
verify that all referenced objects needed by the object (in this case, a Command) exist. The command
is passed in as the �rst parameter. The second parameter is a �ag indicating if the line number in the
script should be written; for commands, that �ag is left at its default true value.

CreateElementWrapper Of these methods, the CreateElementWrapper bears additional explanation.
The following steps are implemented in that method:

1. Determine if the string is a number. If so, create a NumberWrapper, set its value, and return the
wrapper.

2. Check to see if there a parentheses pair in the string. If so, perform the following actions:

• Check to see if the text preceding the opening paren is an array. If not, throw an exception.
• Create an ArrayElementWrapper, and set the array name to the text preceding the opening paren.
• Separate text enclised in the parentheses into row and column strings.
• Call CreateElementWrapper() for the row and column strings, and set the corresponding wrappers

and strings in the ArrayElementWrapper.
• Return the wrapper.

3. Check to see if there a period in the string. If so, the wrapper needs to be either an ObjectProperty-
Wrapper or a ParameterWrapper. Performs these steps to create the correct type:

• Break apart the string using the GmatStringUtil::ParseParameter method.

Draft: Work in Progress
186 CHAPTER 23. MISSION CONTROL SEQUENCE COMMANDS

• Find the owner object, and check to see if it has the type provided in the string. If so, create an
ObjectPropertyWrapper, otherwise create a ParameterWrapper

• Set the description string.

Return the resulting wrapper.

4. Check to see if the string describes a Variable. If so, create a VariableWrapper, set the description and
value, and return the wrapper; otherwise, throw an exception4.

23.4.2 Command Support for Parsing and Wrappers
The command base class, GmatCommand, includes an instance of the TextParser described in Section 16.3.3,
along with an include statement for the GmatStringUtil namespace de�nition (see Section 10.4 for details
of the GmatStringUtil namespace). These inclusions make all of the methods used for general purpose
parsing of text from the TextParser and the low level GmatStringUtil namespace functions available for
use in command parsing. These elements are used by custom InterpretAction() methods when they are
implemented for the commands.

The base class also provides methods used during the creation and validation of the data wrappers. These
methods are used by the ScriptInterpreter, interacting with the Moderator in the Interpreter::CreateCommand()
method, to validate the objects required by the data wrappers. The methods supplied by the command base
class to support data wrappers are described in Section 23.4.4. Before describing these methods, the wrapper
classes will be described.

23.4.3 Data Type Wrapper Classes
Many of the commands need to be able to treat all of the usable data types through a common interface.
Table 23.1 presents representative examples to the allowed data types in commands. The data type interface
used by the commands is captured in the ElementWrapper class, shown with its subclasses in Figure 23.4.
Derived classes are available for each of the supported types, using these classes: NumberWrapper, Ob-
jectPropertyWrapper, VariableWrapper, ArrayElementWrapper, and ParameterWrapper. The Array class,
when accessed as an entity rather than as a data provider for a single Real number, is handled as a special
case by any command designed to work with Array instances. As indicated in the table, no current command
uses this capability, though it will be supported in the NonlinearConstraint command in a future release of
GMAT. Similarly, strings are handled separately.

The wrapper classes implement the following methods:

• std::string GetDescription() Returns the current description string for the wrapper.

• void SetDescription(const std::string &desc) Sets the description string.

• const StringArray &GetRefObjectNames(): Returns a StringArray containing a list of all refer-
ence objects used by the wrapper.

• bool SetRefObject(GmatBase *obj): Passes the a pointer to the reference object into the wrapper
so it can be assigned to the correct internal member.

• void SetupWrapper(): Takes the description string and breaks it into components for later use.

In addition, each ElementWrapper provides two abstract interfaces that can be used during command
execution:

• Real EvaluateReal() is used to calculate the current value of the wrapped object, returning a Real
number when �red.

4A later build will detect and return NULL for Array or String objects, so that they can be handled when needed.

Draft: Work in Progress
23.5. EXECUTING THE SEQUENCE 187

Table 23.1: Script Examples of Parameters Used in Commands

Type Examples Notes
Number 1, 3.1415927, 3.986004415e5,

6.023e23
Integers and Reals are treated identically

Object Parameter Sat.X, Burn.V,
Thruster.ScaleFactor

Any object parameter

Parameters Sat.Longitude, Sat.Q4 Any Calculated Parameter
Variables I, Var Any Variable object
Array Element A(2, 3), B(I, J),

C(D(1, K), E(F(2, 3), L))
Any array entry. Array row and column indices
can be speci�ed using any allowed type

Array A An entire array. Arrays are not yet supported
in GMAT commands. The NonlinearConstraint
command will be updated to use single column
arrays (aka vectors) in a later build.

String �This is a string� A block of text treated as a single entity.

• bool SetReal(const Real value) takes a Real number as input, and sets the wrapped element to
that value. It returns a �ag indicating success or failure of the data setting operation.

The derived wrapper classes implement these methods (and override the other methods as needed) to access
the data structures corresponding to each data type.

23.4.4 Command Scripting Support Methods
The Interpreter subsystem provides the methods needed to construct the data wrapper classes and pass the
wrappers into the commands. GmatCommand provides the following methods to support this process:

• void ClearWrappers(): Deletes all current wrappers in preparation for a new set of wrapper in-
stances.

• const Stringarray &GetWrappedObjectNameArray(): Returns a list of all wrapper descriptions
so that the required wrappers can be constructed.

• bool SetElementWrapper(ElementWrapper *wrapper): Sends the wrapper into the command.
If the wrapper is set correctly, this method returns true. If the description contained in the wrapper
does not match a description in the command, the wrapper is destroyed, and false is returned from
this method. All other error result in a thrown exception.

Note that commands own the wrappers passed in, and are responsible for managing the associated memory.

23.5 Executing the Sequence
The mission control sequence is run in a GMAT Sandbox, following a series of steps described in Section 3.2.5.
In this section, the command speci�c steps are described in a bit more detail.

23.5.1 Initialization
23.5.2 Execution
To be �lled in

Draft: Work in Progress
188 CHAPTER 23. MISSION CONTROL SEQUENCE COMMANDS

Figure 23.4: Parameter Wrappers Used by Commands

23.5.3 Finalization
To be �lled in

23.5.4 Other Details
To be �lled in

Draft: Work in Progress

Chapter 24

Speci�c Command Details

Darrel J. Conway
Thinking Systems, Inc.

Chapter 23 provided an introduction and description of the GMAT command classes and their usage
when building a Mission Control Sequence. In this chapter, the command classes are described on a class
by class level.

24.1 Command Classes
Figure 24.1 shows the command classes incorporated into GMAT at this writing. The base class elements
GmatCommand, BranchCommand, ConditionalBranch, and SolverBranchCommand are described in Chap-
ter 23. This chapter looks at the details of the derived classes shown in the �gure, providing implementation
speci�cs for these commands. The following paragraphs review the role played by the command base classes
and identify pertinent utilities supplied by these bases that the derived classes use to implement their capa-
bilities.

24.1.1 The GmatCommand Class
Every entry in the mission control sequence is implemented as a class derived from GmatCommand. This
base class de�nes the interfaces used for the linked list structures that implement the control sequence. The
next and previous members implement the links for the list structure.

Commands are initialized in the Sandbox, as described in Section 5.2.2.1. They contain three data
structures, set by the Sandbox, that are used to set pointers correctly prior to execution. These structures,
objectMap, solarSys, and publisher, are the structures managed by the Sandbox to run a misison control
sequence. The objectMap and solarSys are the local copies of the con�gured objects and space environment
used when running the model, and need to be accessed and used to set the pointers required in the commands
to run in the Sandbox. This setup is performed in the command's Initialize() method. The publisher
member is a pointer to the global GMAT Publisher, used to send data to the Subscriber subsystem.

Each GmatCommand implements the Execute() method de�ned in GmatCommand. This method, along
with the internal supporting data structures and support methods, distinguish one command from another.
Execute() performs the actions built into the command, manipulating the con�gured objects to make the
model evolve in the Sandbox.

The GmatCommand class provides a generic implementation of the InterpretAction() method, used when
parsing lines of script. Derived classes that need special handling for this parsing override InterpretAction()
to implement the parsing. The GmatCommand base includes an instance of the TextParser so that derived
commands have the facilities provided for parsing.

189

Draft: Work in Progress
190 CHAPTER 24. SPECIFIC COMMAND DETAILS

Figure 24.1: GMAT Command Classes.
Classes shown in yellow are base classes, green are control �ow commands, blue are commands related to
Solvers, and orange are stand alone commands.

24.1.2 Branch Commands
Nesting in the mission control sequence is implemented through the BranchCommand base class. This class,
derived from GmatCommand, adds one or more branches to the main misison sequence. The core feature
os the BranchCommands is the ability to execute these branches when conditions dictate that the branch
should execute. This feature provides users with the ability to execute commands conditionally, to loop over
a set of commands, and to run routines that tune the mission to meet or optimize selected goals.

24.1.2.1 Conditional Branch Commands

Some branch commands need the ability to evaluate conditions in order to determine if a branch should
be executed. THe ConditionalBranch class provides the structures needed to identiofy and evaluate these
conditions.

24.1.2.2 Solver Commands

The Solver subsystem uses several commands designed to interoperate with the Solvers. Because of the
close linkage between these commands and the corresponding solvers, the description for these commands

Draft: Work in Progress
24.2. COMMAND DETAILS 191

is given in Section 25.7.1. The commands de�ned in that section are the branch commands Iterate/EndIt-
erate, Target/EndTarget, and Optimize/EndOptimize, and the GmatCommands Vary, Achieve, Minimize,
NonlinearConstraint, Gradient, and TBD commands associated with the scanners.

The nature of the problem encountered when running the Solvers requires that the sytates of many of the
objects de�ned in the Sandbox be stored at the start of the Solver execution, so that they can be reset as the
Solver iterates over the variables used to perform its tasks. The SolverBranchCommand class provides the
data structures and methods needed to maintain these states while the Solvers are performing their tasks.

24.1.3 Functions
To be �lled in

24.2 Command Details
24.2.1 The Assignment Command
Assignment commands implement the methods necessary for users to pass data into and between objects,
and to create copies of objects at speci�c points in the model, for use in the mission control sequence.
Assignment commands are used to set one or more object properties while executing the mission control
sequence. As can be see in Table 24.1, the command has the general form

LHS = RHS (24.1)

where the LHS entry is a single object or object property, and the RHS entry is a number, object or object
property, or equation.

Table 24.1: Assignment Command

Script Syntax: GMAT Arg1 = Arg2;

Command Description
Arg1 Default: N/A . Options:[Spacecraft Parameter, Array element, Variable, or any

other single element user de�ned parameter]: The Arg1 option allows the user to
set Arg1 to Arg2. Units: N/A.

Arg2 Default: N/A . Options:[Spacecraft Parameter, Array element, Variable, any other
single element user de�ned parameter, or a combination of the aforementioned pa-
rameters using math operators]: The Arg2 option allows the user to de�ne Arg1.
Units: N/A.

Script Examples
% Setting a variable to a number
GMAT testVar = 24;
% Setting a variable to the value of a math statement
GMAT testVar = (testVar2 + 50)/2;

Draft: Work in Progress
192 CHAPTER 24. SPECIFIC COMMAND DETAILS

24.2.2 The Propagate Command
Propagation is controlled in the Mission Control Sequence using the Propagate command, which has syntax
described in Table 24.2.

Table 24.2: Propagate Command

ScriptSyntax

Propagate Mode BackProp PropagatorName (SatList1,{StopCondList1}) ...
BackPropPropagatorName (SatListN,{StopCondListN})

Option Option Description
BackProp Default: None. Options: [Backwards or None]: The BackProp option allows the

user to set the �ag to enable or disable backwards propagation for all spacecraft in
the the SatListN option. The Backward Propagation GUI check box �eld stores
all the data in BackProp. A check indicates backward propagation is enabled and
no check indicates forward propagation. In the script, BackProp can be the word
Backwards for backward propagation or blank for forward propagation. Units: N/A.

Mode Default: None. Options: [Synchronized or None]: The Mode option allows the
user to set the propagation mode for the propagator that will a�ect all of the
spacecraft added to the SatListN option. For example, if synchronized is selected,
all spacecraft are propagated at the same step size. The Propagate Mode GUI �eld
stores all the data in Mode. In the script, Mode is left blank for the None option
and the text of the other options available is used for their respective modes. Units:
N/A.

PropagatorName Default: DefaultProp. Options: [Default propagator or any user-de�ned propaga-
tor]: The PropagatorName option allows the user to select a user de�ned propagator
to use in spacecraft and/or formation propagation. The Propagator GUI �eld stores
all the data in PropagatorName. Units: N/A.

SatListN Default: DefaultSC. Options: [Any existing spacecraft or formations, not being
propagated by another propagator in the same Propagate event. Multiple spacecraft
must be expressed in a comma delimited list format.]: The SatListN option allows
the user to enter all the satellites and/or formations they want to propagate using
the PropagatorName propagator settings. The Spacecraft List GUI �eld stores all
the data in SatListN. Units: N/A.

StopCondListN
/Parameter

Default: DefaultSC.ElapsedSecs =. Options: [Any single element user accessi-
ble spacecraft parameter followed by an equal sign]. The StopCondListN option
allows the user to enter all the parameters used for the propagator stopping condi-
tion. See the StopCondListN/Condition Option/Field for additional details to the
StopCondListN option. Units: N/A.

Draft: Work in Progress
24.2. COMMAND DETAILS 193

Table 24.2: Propagate Command . . . continued

StopCondListN
/Condition

Default: 8640.0. Options: [Real Number, Array element, Variable, spacecraft
parameter, or any user de�ned parameter]. The StopCondListN option allows
the user to enter the propagator stopping condition's value for the StopCondListN
Parameter �eld. Units: Dependant on the condition selected.

Script Examples
% Single spacecraft propagation with one stopping condition
% Syntax #1
Propagate DefaultProp(DefaultSC, {DefaultSC.ElapsedSecs = 8640.0});

% Single spacecraft propagation with one stopping condition
% Syntax #2
Propagate DefaultProp(DefaultSC) {DefaultSC.ElapsedSecs = 8640.0};

% Single spacecraft propagation by one integration step
Propagate DefaultProp(DefaultSC);

% Multiple spacecraft propagation by one integration step
Propagate DefaultProp(Sat1, Sat2, Sat3);

% Single formation propagation by one integration step
Propagate DefaultProp(DefaultFormation);

% Single spacecraft backwards propagation by one integration step
Propagate Backwards DefaultProp(DefaultSC);

% Two spacecraft synchronized propagation with one stopping condition
Propagate Synchronized DefaultProp(Sat1, Sat2, {DefaultSC.ElapsedSecs = 8640.0});

% Multiple spacecraft propagation with multiple stopping conditions and propagation settings
% Syntax #1
Propagate Prop1(Sat1,Sat2, {Sat1.ElapsedSecs = 8640.0, Sat2.MA = 90}) ...
Prop2(Sat3, {Sat3.TA = 0.0});

% Multiple spacecraft propagation with multiple stopping conditions and propagation settings
% Syntax #2
Propagate Prop1(Sat1,Sat2) {Sat1.ElapsedSecs = 8640.0, Sat2.MA = 90} . . .
Prop2(Sat3) {Sat3.TA = 0.0};

Each Propagate command identi�es one or more PropSetup1, consisting of an integrator and forcemodel
de�ned to work together. Each PropSetup identi�es one or more SpaceObject that it is responsible for
advancing through time. This propagation framework allows users to model the motion of one or more
SpaceObjects using di�erent propagation modes, and to advance the SpaceObjects to speci�c points on the
SpaceObject's trajectories.

1The object used in this role in GMAT is an instance of the PropSetup class. On the GUI and in GMAT scripting, the
keyword used for PropSetup instances is �Propagator.� In this document I'll use the class name, PropSetup, when referring to
these objects.

Draft: Work in Progress
194 CHAPTER 24. SPECIFIC COMMAND DETAILS

24.2.2.1 Propagation Modes

The Propagate command provides several di�erent modes of propagation based on the settings passed into
the command. These modes are described in the following list:

• Unsynchronized Propagation Unsynchronized propagation is performed by executing the PropSe-
tups assigned to a Propagate command independently, allowing each PropSetup to �nd its optimal
step without regard for other PropSetups assigned to the command.

• Synchronized Propagation Synchronized propagation steps the �rst PropSetup assigned to the
command using its optimal step, and then advances the remaining PropSetups by the same interval,
so that the epochs for all of the PropSetups remain synchronized during integration.

• Backwards Propagation GMAT usually integrates SpaceObjects so that the epoch of the SpaceOb-
ject increases. Integration can also be performed so that the epoch decreases, modeling motion back-
wards in time.

• Propagation to Speci�c Events Propagation can be performed in GMAT until speci�c events
occur along a SpaceObject's trajectory. When the one of these speci�ed events occurs, the Propagate
command detects that a condition requiring termination of propagation has occurred, �nds the time
step required to reach the epoch for that termination, and calls the PropSetups to propagate the
SpaceObjects for that period.

• Single Step PropagationWhen no speci�c events are speci�ed as stopping conditions, the Propagate
command takes a single propagation step and exits.

24.2.2.2 The Propagation Algorithm

Figure 24.2 shows the basic process implemented in the Propagate command. Propagation usually consumes
the bulk of the time required to run a mission in GMAT. Because of this feature, the Propagate command
was written to support execution across several steps in the Sandbox, so that the Sandbox can poll for user
interruption during propagation. There are several initialization steps required at the start of propagation
that should not be performed when reentering the command from a polling check in the Sandbox. These
steps are performed in the PrepareToPropagate() method identi�ed in the �gure.

Once the Propagate command is ready to perform propagation, the force models used in propagation are
initialized to the start of the step about to be taken, and then the PropSetups take a single integration step.
The resulting integrated states are passed into the relevant SpaceObjects through calls to the ForceModel's
UpdateSpaceObject methods.

The next action depends on the propagation stopping mode: if the Propagate command is operating in
single step mode, propagation is complete and control exits the propagation loop. Otherwise, the stopping
conditions are evaluated and compared to the desired stopping events. If no stopping conditions have been
passed or met, the integrated state data is passed to GMAT's Publisher for distribution. The command
then determines if an interrupt check is required; if so, control is returned to the Sandbox for the check,
otherwise, the propagation loop resumes with an update to the ForceModel.

If a stopping condition was triggered, it is �rst tested to ensure that the triggered stopping condition is
not an artifact of a previous propagation execution. This test is only performed during the �rst propagation
step of a new execution. If the stopping condition passes this validation, control leaves the main propagation
loop and enters the control logic implemented to terminate propagation at a speci�c stopping event, as
described in the next section.

Once the propagation has been terminated, any transient forces set during propagation are cleared from
the force models, command summary data is set when running with stopping conditions, and execution is
completed.

Draft: Work in Progress
24.2. COMMAND DETAILS 195

Figure 24.2: Executing the Propagate Command
The core propagation code is shown in blue. Steps taken during startup and shutdown are colored
green. Steps used when stopping propagation at speci�c events are shown in red; additional details
for the stopping condition algorithm are described below and shown in Figure 24.3.

24.2.2.3 The Stopping Algorithm
Propagation performed to reach speci�c events is terminated at points within a �xed tolerance of those
events. The algorithm employed to take this �nal step is shown in Figure 24.3. Propagation used time as
the independent parameter to evolve the states of the propagated SpaceObjects, so the stopping condition
problem can be reduced to �nding the time step that moves the SpaceObjects from the propagated state
immediately prior to the desired event up to that event. The steps shown in the �gure are used to �nd that
time step, and to advance the SpaceObject states by that amount.

Stopping Condition Evaluation. The top portion of the �gure shows the basic stopping condition
evaluation procedure in the command. First the force model is prepared for a propagation step. If the
stopping condition is a time based condition, the time step is estimated by subtracting the desired time from
the current time. Stopping conditions that are not time based are estimated using a cubic spline algorithm,
designed to avoid knots at the second and fourth points used when building the splines (see the description
of the not-a-knot cubic spline in [MathSpec]). The steps performed when running the cubic spline are shown
in the central portion of the �gure and described below.

After the time step needed to reach the desired event has been estimated, the SpaceObjects are propagated
using that time step. The resulting values for the stopping parameters are calculated and compared to the
desired stop values. If the result is not within the stopping tolerance for the propagation, a further re�nement
is made to the time step estimate using a secant based implementation of Newton's method, described below
and illustrated in the bottom portion of the �gure.

Once the �nal propagation step has been performed to acceptable tolerance, the resulting propagated
states are applied to the SpaceObjects. The Publisher is passed the new state data and instructed to empty

Draft: Work in Progress
196 CHAPTER 24. SPECIFIC COMMAND DETAILS

Figure 24.3: Algorithm Used to Stop Propagation
The core algorithm is shown in orange, in the sequence at the top of the �gure. The initial
estimate of the time step needed to reach the stop epoch is performed using a cubic spline
algorithm; this sequence is shown in purple in the center of the diagram. If further re�nements
are needed, they are made using a secant algorithm, shown in the lower, green portion of the
�gure.

its data bu�ers. This completes the stopping algorithm.

Cubic Spline Details. The heart of the stop time estimation for events that are not time based is the not-
a-knot cubic spline algorithm. The problem solved using this algorithm inverts the roles of the independent
variable � the propagation time � and the dependent variable � the parameter that is advancing to reach
some speci�c event � so that the desired time step can be generated based on the desired event value. Since
we already know the time step that advances the SpaceObject states from one side of the desired event to
the other, we have the time steps that bracket the stop time, and we need only re�ne this time using the
spline interpolator.

The spline algorithm requires �ve pairs of data points to estimate this time. These data points are
generating by propagating the SpaceObjects across the time interval that brackets the stop event in four
equally spaced steps, evaluating the stop parameter after each step. These values and associated times, along
with the parameter value and time at the start of the process, are used by the spline to estimate the time
step needed to reach the target event. The implementation details, as shown in the �gure, are described in
the following paragraphs.

Before performing the necessary propagations, the SpaceObject states at the start of the procedure are

Draft: Work in Progress
24.2. COMMAND DETAILS 197

bu�ered so that they can be restored later. The SpaceObjects are then propagated for a minimum of four
steps, checking to ensure that the stop event is actually crossed. If the desired event is not crossed, additional
propagation steps � up to a maximum of four additional steps � are allowed in order to continue searching
for the condition required for stopping. If the event is still not encountered, and exception is thrown and
execution terminates.

Once the spline bu�er has been �lled with values that bracket the stop event, the spline algorithm is
called to get the time step that is estimated to produce target value. This time step is stored, the bu�ered
states are reset on the SpaceObjects, and the force model is reset in proparation for a �nal propagation step.
This completes the spline interpolation portion of the stopping condition evaluation.

Additional Re�nements using a Secant Solver. For most stopping reqirements encountered in GMAT,
the not-a-knot cubic spline solution described above is su�ciently accurate. However, there are cases in wich
the propagation needs further re�nement to meet mission requirements. In those cases, the cubic spline
solution is re�ned using a secant based root �nder. The resulting algorithm, shown in the bottom portion
of Figure 24.3, is described in the following paragraphs.

The data in the force model at this point in the process is the propagated state data generated using the
time step obtained from the cubic spline. Before proceding, these data are replaced with the state data at
the start of the �nal step.

The next estimate, t2, for the desired time step is made using the target parameter value, vT , the
calculated parameter value, v0 at the epoch t0 of the initial state and the value, v1, obtained after the spline
step, t1, was applied using the formula

t2 = vT
t1 − t0
v1 − v0

. (24.2)

This formula is evaluated in the SecantToStop method. The resulting time step is then applied to the
SpaceObjects. If the resulting parameter value is withing acceptable tolerance, the re�nement algorithm
terminates. If not, the results from this new step are stored, the state data and force model are reset, and a
new time step is calculated using the equation

tn+1 = vT
tn − tn−1

vn − vn−1
. (24.3)

This process repeats until either an integration step is taken that meets the propagator tolerance require-
ments, or an unacceptable number of attempts have been made and failed. The Propagate command will
make 50 such attempts before raising an exception and termminating execution.

24.2.2.4 The Startup and Shutdown Routines
There are several steps that need to be applied before and after propagation to ensuree htat propagation
uses and releases data that depends on the current state of the mission control sequence. The following
paragraphs destribe these steps.

During startup , the Propagate command updates the object pointers and data structures to match the
current state of the objects in the mission. More to come here.

Upon completion of propagation, the Propagate command resets its internal �ags indicating that the
command is ready to be called at a new point in the mission and clears any transient forces that have
been set for the current propagation. If the command is not running in single step mode, the states of
the SpaceObjects are accessed and stored in the command summary bu�ers for display on user request.
(This operation is moderately expensive computationally, so it is not performed in single step mode.) This
completes execution of the Propagate command.

Draft: Work in Progress
198 CHAPTER 24. SPECIFIC COMMAND DETAILS

24.2.2.5 Propagate Command Attributes and Methods
The class design for the Propagate command is shown in Figure 24.4.

Figure 24.4: Propagate Command Details

Class Attributes Each Propagate command instance implements the following data elements:

• StringArray propName: List of the PropSetups used in this command.

• std::vector<StringArray*> satName: A vector of lists of SpaceObjects. There is a 1:1 corre-
spondence between the propName members and the satName StringArrays. In addition, each of these
StringArrays must have at least one member, and that member must be the name of a SpaceObject.

• std::string currentPropMode: The propagation mode setting for the PropSetups. This string
tracks whether the propagation is synchronized or not2.

• Real direction: The propagation direction: 1.0 to propagate forwards in time, -1.0 to propagate
backwards.

• int interruptCheckFrequency: The number of steps the PropSetup will take before returning
control to the Sandbox. This setting is used to allow the Sandbox to poll for interrupts from the
user, as described in Section 5.2.3.

• std::vector<PropSetup *> prop: The PropSetups used in this instance.

• std::vector<SpaceObject *> sats: The SpaceObjects propagated by the PropSetups.
2GMAT currently supports two propagation modes, synchronized � speci�ed by the keyword �Synchronized�, and unsyn-

chronized, the default setting. Backwards propagation is treated separately, though the �BackProp� keyword is parsed as a
propagation mode.

Draft: Work in Progress
24.2. COMMAND DETAILS 199

• std::vector<StopCondition *> stopWhen: The stopping conditions used to determine when
propagation should terminate. If no stopping conditions are speci�ed, the PropSetups �re the mmini-
mum number of times allowed � one time in unsynchronized mode, and just enough times to meet the
synchronization constraint in synchronized mode.

Methods The public methods implemented in the Propagate command are itemized below:

• bool TakeAction(const std::string &action, const std::string &actionData): Performs actions
speci�c to propagation. The Propagate command de�nes three actions:

� Clear : Clears the arrays of reference objects used by the instance. Clearing can occur for two
distinct types of objects:
∗ Propagator: Clears the lists of PropSetups, propagated SpaceObjects, and the associated

StringArrays.
∗ StopCondition: Clears the lists of stopping conditions, SpaceObjects used for stoppign, and

any associated StringArrays.
� SetStopSpacecraft : Adds a named SpaceObject to the list of SpaceObjects used for stopping.
� ResetLoopData: Resets the PropSetups to their startup values so that Solvers obtain consistent

results when iterating to a solution.

• void FillFormation(SpaceObject* so, StringArray owners, StringArray elements): Fills in
the components of a formation recursively.

• GmatCommand* GetNext(): Returns the next command that should be executed. Propagate
overrides the implementation provided by GmatCommand so that interrupt polling can occur without
abnormally terminating propagation.

• bool InterpretAction(): The parser for the Propagate command, overridden from the default im-
plementation to handle all of the variations Propagate supports.

• void SetTransientForces(std::vector<PhysicalModel*> *tf): Tells the Propagate command
about the current list of transient forces, so taht the command can incorporate active transient forces
into the force model in the PropSetups.

• bool Initialize(): Performs initialization in the Sandbox prior to execution of the command.

• bool Execute(): Performs the propagation.

• void RunComplete(): Cleans up the command structures after completion of propagation.

24.2.3 The Create Command
24.2.4 The Target Command
24.2.5 The Optimize Command

Draft: Work in Progress
200 CHAPTER 24. SPECIFIC COMMAND DETAILS

Draft: Work in Progress

Chapter 25

Solvers

Darrel J. Conway
Thinking Systems, Inc.

25.1 Overview
GMAT implements several algorithms used to tune mission models, so that speci�c mission goals can be
de�ned and achieved from within the mission sequence. The subsystem used for this mission parameter
tuning is the Solver subsystem.

Each of the solvers in GMAT can be described as a �nite state machine taking the input state of the
GMAT objects in a mission and changing the states of user speci�ed parameters to achieve desired goals.
Each solver executes a series of GMAT commands as part of this solution �nding algorithm; the di�erences
between the di�erent solvers comes from the approach taken to �nd this solution.

25.2 Solver Class Hierarchy
Each solver takes a section of a mission sequence, and manipulates variables in that subsequence in order
to evaluate how those changes a�ect the modeled mission. The results of the changes are collected in the
Solver, reported to the user if desired, and possibly used to drive subsequent actions in the mission sequence.

The Solver subsystem can be decomposed into three broad categories of algorithms: scanners, targeters,
and optimizers. The distinguishing characteristics of these di�erent algorithms can be summarized as follows:

• Scanners are used to perform studies of the behavior of the the system as the variables change, in
order to collect statistical data about how the system behaves in the neighborhood of the variables
de�ned for the problem. A scanner does not have an inherent set of goals; rather, the intention of a
scanner is to evaluate how changes in the system variables a�ect the behavior of the system over time.

• Targeters are used to �nd solutions that satisfy a set of goals to within some user de�ned set of
tolerances. In other words, a targeter is seeking an exact solution, and stops searching for that solution
when the achieved results of the targeter all fall to within a speci�ed tolerance of those goals.

• Optimizers are used to �nd the con�guration of the variables that best satis�es a set of user goals,
subject, optionally, to a set of constraints. Optimizers function by seeking the minimum of a user
de�ned function of parameters, subject to these constraints.

201

Draft: Work in Progress
202 CHAPTER 25. SOLVERS

Figure 25.1: The Solver Subsystem

Figure 25.11 shows the class hierarchy for the GMAT solvers, including a number of planned extensions
that are not yet scheduled for implementation, identi�ed by the �future� label. The base class, Solver, con-
tains the core elements required to implement the solver �nite state machine. These elements are assembled
di�erently to implement di�erent classes of solvers, as described in the following sections.

The Solver class hierarchy shown here identi�es two scanners, two targeters (the Di�erentialCorrector and
Broyden targeters), and three optimizers. The scanners, ParametericScanner and MonteCarlo, are planned
enhancements to GMAT that are not currently scheduled for implementation. The Di�erentialCorrector is
a targeter used extensively at Goddard Space Flight Center and other locales to �nd solutions to targeting
goals; Broyden's method, another targeter slated for implementation in GMAT, solves similar problems.
The SteepestDescent and QuasiNewton optimizers are planned enhancements that will be built as native
algorithms in the GMAT code base. The FminconOptimizer is an optimizer implemented in the MATLAB
Optimization Toolbox. GMAT uses the MATLAB interface to communicate with this component through
the ExternalOptimizer class.

25.3 The Solver Base Class
Core elements of the Solver class are shown in Figure 25.2. This class contains the infrastructure required
to run a solver state machine. The class provides default implementations for methods run at each state,

1Note: The current implementation of the di�erential corrector does not yet conform to the class structure de�ned here
because the intermediate class, Targeter, is not yet implemented.

Draft: Work in Progress
25.3. THE SOLVER BASE CLASS 203

Figure 25.2: The Solver Base Class

and abstract interfaces for the methods used by the GMAT Command classes.

25.3.1 Solver Enumerations
The Solver base class contains two public enumerations used evaluate the status of the solver objects during
a run and to control the style of the diagnostic reports generated by the solver. The SolverState enumeration
is used to represent the �nite states in the solver's state machine. It can be set to any of the following values:

• INITIALIZING: The entry state for the state machine, this state is used to set the initial data and
object pointers for the state machine.

• NOMINAL: The nominal state is used to evaluate the behavior of the solver subsequence using the
current best guess at the values of the variables.

• PERTURBING: Many solver algorithms work by applying small perturbations to the nominal values
of the variables, and collecting the resulting a�ects on the solver subsequence. This state is used to
perform those perturbations.

Draft: Work in Progress
204 CHAPTER 25. SOLVERS

• ITERATING: The Scanners perform a series of runs at calculated values of the variables. This state
is used to iterate over those values.

• CALCULATING: The CALCULATING state is used to perform algorithm speci�c calculations in
preparation for the next pass through the solver subsequence.

• CHECKINGRUN: This state is used to evaluate the current results of the solver run, and to deter-
mine if the solver algorithm has accomplished its goals.

• RUNEXTERNAL: The state used to launch an external solver which controls the solution process.

• FINISHED: This �nal state is used to report the results of the solver run, and to perform any �nal
adjustments required to use those results in the rest of the mission sequence.

• UNDEFINED_STATE: A value used to indicate a fault, and as a special case for the solver text
�le.

The states actually used by a solver are algorithm dependent; no given algorithm is likely to use all of the
states represented by this enumeration.

The ReportStyle enumeration is used to set the level of reporting performed while a solver is executing.
This enumeration is used to represent the following styles of reporting:

• NORMAL_STYLE The default report style, set using the string �Normal�.

• CONCISE_STYLE A compact report style, set using the string �Concise�.

• VERBOSE_STYLE A report style generating lots of data, useful for analyzing the details of a run,
set using the string �Verbose�.

• DEBUG_STYLE A report style useful for debugging solver algorithms, set using the string �Debug�.

Each solver has a member parameter, the �ReportStyle�, used to set the reporting style. The ReportProgress
method, described below, is used to generate the text for a report.

25.3.2 Solver Members
The Solver base class contains the following member data elements:

Class Attributes

• SolverState currentState: The current state of the solver, one of the members of the SolverState
enumeration.

• std::string textFileMode: The string representation for the output mode, set to one of the following:
�Compact�, �Normal�, �Verbose�, or �Debug�.

• bool showProgress: A �ag used to toggle the progress report on or o�.

• Integer progressStyle: An integer representation of the report style, taken from the ReportStyle
enumeration.

• std::string debugString: A string used in the progress report when in Debug mode.

• Integer variableCount: The number of variables used in the current problem.

• StringArray variableNames: A string array containing the name of each variable.

Draft: Work in Progress
25.3. THE SOLVER BASE CLASS 205

• std::vector<Real> variable: The array of current values for the variables used by the solver.

• Integer iterationsTaken: The number of iterations taken by the current run of the solver.

• Integer maxIterations: The maximum number of iterations through the subsequence allowed for
the solver.

All solvers must provide implementations of these �ve pure virtual methods:

Abstract Methods

• bool Initialize(): Used to set object pointers and validate internal data structures. GMAT initializes
all of the commands in the solver subsequence before executing this method, so all of the variable data
and result data structures have been registered when this method is called.

• Integer SetSolverVariables(Real *data, const std::string &name): This is the variable regis-
tration method, used to pass in parameter data speci�c to variables used in the solver algorithm. This
method is used by the Vary Command during initialization to set up the solver variables for a run.
The return value from the method is the index in the solver array for the variable, or -1 if the variable
could not be registered. The parameters in the method are used to set the details for the variables:

data: An array containing the initial value for the variable. This array may also contain additional
algorithm speci�c variable settings; for instance, the perturbation for the variable, and the minimum
and maximum values for the variable, and the maximum allowed step for changes to the variable.

name: The string name associated with the variable.

• Real GetSolverVariable(Integer id): Used to obtain the current value of a variable from the
solver. The Vary command uses this method to refresh the current value for a variable during a solver
subsequence run. The parameter, id, is the index of the requested variable in the solver's variable
array.

• Integer SetSolverResults(Real *data, const std::string &name, const std::string &type):
This is the method used to register the values returned from the solver subsequence to the solver. It
is used to pass in parameter data speci�c to the subsequence run outputs, so that the solver has the
data needed to initialize and track the results of an iteration through the subsequence. For targeters,
the Achieve command uses this method to set up targeter goals. Optimizers use this method to set
up the connection to the objective function and constraints. Scanners use this method to report the
products of each scanning run.

data: An array containing settings for the solver result, if applicable. An example of the type of
data in this �eld is the acceptable tolerance for a targeter goal.

name: The string name associated with the solver result.
type: The string name associated with the type of solver result. This �eld defaults to the empty

string, and is only used when a solver needs to distinguish types of resultant data.

• void SetResultValue(Integer id, Real value): Used to report data calculated while running the
subsequence to the Solver. Commands speci�c to the di�erent algorithms use this method to pass
data into a solver; for example, for the di�erential corrector, the Achieve command passes the achieved
data to the solver using this method. Optimizers use this method to send the value of the objective
function, and constraints, and, if calculated, the gradient of the objective function and Jacobian of the
constraints. Scanners use this method to receive the data that is being measured, so that meaningful
statistics can be calculated for the scanning run.

Each solver contains the following methods, which have default implementations:

Draft: Work in Progress
206 CHAPTER 25. SOLVERS

Methods

• SolverState GetState(): Retrieves the current SolverState for the solver.

• SolverState AdvanceState(): Executes current state activities and then advances the state machine
to the next SolverState.

• void ReportProgress(): Writes the current progress string to the GMAT message interface, which
writes the string to the log �le and message window.

• void SetResultValue(Integer id, std::vector<Real> values): Used to report multiple data
values in a vector, calculated while running the subsequence, to the solver. Note that this is an
overloaded method; there is also an abstract SetResultValue method which sets a single Real value. The
default implementation of this method is empty; solvers that need it should provide an implementation
tailored to their needs.

• void SetDebugString(std::string str): Sets the string contents for the debug string.

• void CompleteInitialization(): Finalizes the initialization of the solver. This method is executed
when the state machine is in the INITIALIZING state.

• void RunNominal(): Executes a nominal run of the solver subsequence. This method is executed
when the state machine is in the NOMINAL state.

• void RunPerturbation(): Executes a perturbation run of the solver subsequence. This method is
executed when the state machine is in the PERTURBING state.

• void RunIteration(): Executes one run of the solver subsequence and increments the iteration
counter. This method is executed when the state machine is in the ITERATING state.

• void CalculateParameters(): Performs algorithm speci�c calculations for the solver. This method
is executed when the state machine is in the CALCULATING state.

• void CheckCompletion(): Checks to see if the solver has completed its tasks. This method is
executed when the state machine is in the CHECKINGRUN state.

• void RunExternal(): Launches an external process that drives the solver. This method is executed
when the state machine is in the RUNEXTERNAL state.

• void RunComplete(): Finalizes the data from the solver subsequence and sets up the corresponding
data for subsequent steps in the GMAT mission sequence. This method is executed when the state
machine is in the FINISHED state.

25.4 Scanners
TBD � This section will be completed when the �rst scanner is scheduled for implementation.

25.5 Targeters
Given a mapping from a set of variables to a set of results,

M(x) −→ R (25.1)
Targeting is the process of �nding the value of a set of variables xG, such that the mapping M(xG) produces
a desired set of results, G:

Draft: Work in Progress
25.5. TARGETERS 207

M(xG) −→ G (25.2)
The targeting problem is a search for an exact solution. Numerically, the targeting problem is met when a
set of variables xn is found that satis�es the conditions

M(xn) −→ Rn such that |G−Rn| ≤ δ (25.3)
where δ is the vector of tolerances for the resulting quantities.

The targeting problem is typically formulated as a series of steps proceding from an initial guess to a
solution, as outlined here:

1. Generate an initial guess xi = x0

2. Evaluate M(xi) = Ai

3. Compare Ai with the goals, G. If |G−Ai| ≤ δ, go to step 6

4. Using the targeter algorithm, calculate new values for the variables xi = T (xi−1; Ai−1).

5. Go to step 2

6. Report the results and exit.

25.5.1 Di�erential Correction

Figure 25.3: State Transitions for the Di�erential Corrector

25.5.1.1 Scripting a Di�erential Corrector
1 %---
2 %------------------ Create core objects --------------------------
3 %---
4 Create Spacecraft sat;
5

6 Create ForceModel DefaultProp_ForceModel;
7 GMAT DefaultProp_ForceModel.PrimaryBodies = {Earth};

Draft: Work in Progress
208 CHAPTER 25. SOLVERS

8

9 Create Propagator DefaultProp;
10 GMAT DefaultProp.FM = DefaultProp_ForceModel;
11

12 Create ImpulsiveBurn TOI;
13 GMAT TOI.Axes = VNB;
14 Create ImpulsiveBurn GOI;
15 GMAT GOI.Axes = VNB;
16

17 %---
18 %---------------- Create and Setup the Targeter ------------------
19 %---
20 Create DifferentialCorrector DC;
21 GMAT DC.TargeterTextFile = targeter_DefaultDC.data;
22 GMAT DC.MaximumIterations = 25;
23 GMAT DC.UseCentralDifferences = false;
24

25 %---
26 %------------------- Create and Setup a plot ---------------------
27 %---
28 Create XYPlot watchTargeter;
29 GMAT watchTargeter.IndVar = sat.A1ModJulian;
30 GMAT watchTargeter.Add = {sat.RMAG};
31 GMAT watchTargeter.Grid = On;
32 GMAT watchTargeter.TargetStatus = On;
33

34 %***
35 %-------------------The Mission Sequence--------------------------
36 %***
37

38 % The targeting sequences below demonstrates how to use a
39 % differential corrector in GMAT to construct a Hohmann transfer
40 % between two circular, co-planar orbits by targeting first one
41 % maneuver to raise.apogee, and then a second maneuver to
42 % circularize.
43

44 % Start by spending some time in the initial orbit
45 Propagate DefaultProp(sat, {sat.ElapsedSecs = 86400});
46 Propagate DefaultProp(sat, {sat.Periapsis});
47

48 % Target the apogee raising maneuver
49 Target DC;
50 Vary DC(TOI.V = 0.5, {Pert = 0.0001, MaxStep = 0.2, Lower = 0, Upper = 3.14159});
51 Maneuver TOI(sat);
52 Propagate DefaultProp(sat, {sat.Apoapsis});
53 Achieve DC(sat.Earth.RMAG = 42165, {Tolerance = 0.1});
54 EndTarget; % For targeter DC
55

56 % Propagate for 1.5 orbits on the transfer trajectory
57 Propagate DefaultProp(sat, {sat.Periapsis});
58 Propagate DefaultProp(sat, {sat.Apoapsis});

Draft: Work in Progress
25.6. OPTIMIZERS 209

59

60 % Target the circularizing maneuver
61 Target DC;
62 Vary DC(TOI.V = 0.5, {Pert = 0.0001, MaxStep = 0.2, Lower = 0, Upper = 3.14159});
63 Maneuver TOI(sat);
64 Propagate DefaultProp(sat, {sat.Periapsis});
65 Achieve DC(sat.Earth.SMA = 42165, {Tolerance = 0.1});
66 EndTarget; % For targeter DC
67

68 % Propagate for an additional day
69 Propagate DefaultProp(sat, {sat.ElapsedSecs = 86400});

25.5.2 Broyden's Method
TBD � This section will be completed when the Broyden's method is scheduled for implementation.

25.6 Optimizers
Optimization is the process of taking a function f(x) of a set of variables x, and changing the values
of those variables to move the function to a minimum. The function f is called the objective function.
Constrained optimization adds a set of constraints that must simultaneously be satis�ed. More succinctly,
the optimization problem can be written

min
x∈Rn

f(x) such that
{

ci(x) = 0 and
cj(x) ≥ 0

(25.4)

The constraint functions, c, specify additional conditions that need to be satis�ed in order for the problem
to be solved. The constraints can be broken into two categories. Constraints that need to be met exactly,
the ci constraints in equation 25.4, are referred to as equality constraints. Constraints that only need to
satisfy some bounding conditions, represented here by cj , are called inequality constraints.

Numerically, the optimization problem is solved when either the gradient of the objective function falls
below a speci�ed value while the constraints are met to a given tolerance, or when the constraints are met
and the solution point x is unchanging during subsequent iterations. The optimization problem is can be
formulated as a series of steps proceeding from an initial guess to a solution, similar to a targeting problem:

1. Generate an initial guess xi = x0

2. Evaluate f(xi) and constraints

3. Evaluate the gradient of the objective function at xi and the constraint Jacobians. This step usually
involves either an analytic calculation or iterating the f(x) calculation with small perturbations.

4. Check to see if xi is a local minimum or unchanging, and if the constraints are met. If so, go to step 8.

5. Use the optimizer algorithm to calculate a new search direction.

6. Step in the search direction to a minimal value in that direction. This is the new value for xi.

7. Go to step 3

8. Report the results and exit.

Figure 25.4 shows the state transitions for a typical optimization algorithm that follows this procedure.

Draft: Work in Progress
210 CHAPTER 25. SOLVERS

Figure 25.4: State Transitions for Optimization

25.6.1 The Optimizer Base Class
All optimizers require an objective function that changes based on the values of the variables in the problem.
In addition, when analytic gradients of the objective function can be calculated, the optimization procedure
can be streamlined to incorporate these data. Optimizers that include constraints also need data structures to
store the constraint data. Storage support for all of these values is built into the Optimizer base class, shown
in Figure 25.5. The computation of these parameters is provided in the optimization speci�c commands,
described later in this chapter. The members of this base class serve the following purposes:

Class Attributes
• std::string objectiveFnName: The name of the objective function data provider. This member

defaults to the string �Objective�, but users can override that value by setting this data member.

• Real cost: The latest value obtained for the objective function.

• Real tolerance: Optimizers have converged on a solution when the magnitude of the gradient of the
cost function is smaller that a user speci�ed value. This parameter holds that value. Note that GMAT
can pass this parameter into external optimizers as one of the parameters in the options data member.

• bool converged: A boolean �ag used to detect when the optimizer has reached an acceptable value
for the objective function and, if applicable, the constraints.

• StringArray eqConstraintNames: The names of the equality constraint variables.

• std::vector<Real> eqConstraintValues: The most recent values obtained for the equality con-
straints.

• StringArray ineqConstraintNames: The names of the inequality constraint variables.

• std::vector<Real> ineqConstraintValues: The most recent values obtained for the inequality
constraints.

Draft: Work in Progress
25.6. OPTIMIZERS 211

Figure 25.5: The Optimizer Base Class

• std::vector<Real> gradient: �Future� The most recently calculated gradient of the objective
function.

• Rmatrix eqConstraintJacobian: �Future� The most recently calculated Jacobian of the equality
constraints.

• Rmatrix ineqConstraintJacobian: �Future� The most recently calculated Jacobian of the inequal-
ity constraints.

Methods The methods shown in Figure 25.5 provide implementations of the methods in the Solver
base class. These methods are described below:

• bool Initialize(): Used to set object pointers and validate internal data structures. GMAT initializes
all of the commands in the optimizer subsequence in the Optimize::Initialize() method, called on the
command sequence during Sandbox initialization. After performing this initialization, the Optimize
command calls this method, so data structures can be prepared for all of the variable data and result
data elements registered during command subsequence initialization.

• Integer SetSolverResults(Real *data, const std::string &name, const std::string &type):
Used to register parameter data needed by the optimizer to evaluate the behavior of a subsequence
run. For optimizers, the Minimize and NonLinearConstraint commands use this method to set up the
connection to the objective function and constraints. Future releases will implement the Gradient,
EqConstraintJacobian, and IneqConstraintJacobian commands, which will also use this method.

data: An array containing settings for the output parameter.

name: The string name associated with the parameter.

Draft: Work in Progress
212 CHAPTER 25. SOLVERS

Figure 25.6: GMAT state transitions when running the FminconOptimizer Optimizer

type: The string name associated with the type of resultant used in the optimizer. Valid op-
tions are �Objective�2, �EqConstraint�, �IneqConstraint�, �ObjGradient�, �EqConstraintJacobian�, and
�IneqConstraintJacobian�.

• void SetResultValue(Integer id, Real value): Used to report data, calculated while running the
subsequence, to the optimizer. The Minimize and NonLinearConstraint commands use this method to
set the current values of the objective function and constraints.

• void SetResultValue(Integer id, std::vector<Real> values): �Future� Used to report multiple
data values in a vector, calculated while running the subsequence, to the optimizer. When implemented,
the Gradient and Jacobian commands will report data to the optimizers using this method.

Each of these methods may be overridden based on the needs of the derived optimizers.

25.6.2 Internal GMAT optimizers
TBD � This section will be completed when the �rst internal optimizer is scheduled for implementation.

25.6.2.1 The Steepest Descent Optimizer
TBD � This section will be completed when the steepest descent optimizer is scheduled for implementation.

25.6.2.2 The Quasi-Newton Optimizer
TBD � This section will be completed when the quasi-Newton optimizer is scheduled for implementation.

25.6.3 External Optimizers
The optimizers described in Section 25.6.2 are coded directly into the system. GMAT also provides access
to the MATLAB Optimization Toolbox[opttools] through a set of interfaces designed for this purpose.

25.6.3.1 External Optimizer State Transitions
GMAT has the ability to incorporate optimizers coded outside of the system, as long at those optimizers
provide communications interfaces that can be interfaced to GMAT. These outside processes are called

2If more than one command attempts to register an objective function in the same optimizer loop, GMAT will throw an
exception stating that the optimization problem is ill de�ned because there is more than one objective function.

Draft: Work in Progress
25.6. OPTIMIZERS 213

�external optimizers.� A typical �nite state machine used to perform optimization using an external optimizer
is shown in the state transitions diagram for the fmincon optimizer from MATLAB's Optimization Toolbox,
Figure 25.6. The state machine for fmincon will be used in what follows to provide an overvie of external
optimization; other external processes would adapt this machine to meet their needs.

The optimization process starts in an INITIALIZING state. When the AdvanceState() method is called
in this state, the object references necessary for the optimization run are set. This step includes passing the
pointer to the Optimize command at the start of the optimization loop to the GmatInterface that MATLAB
uses to communicate with GMAT. The Optimize command includes a method, ExecuteCallback(), used
when the fmincon optimizer needs to run the optimizer subsequence and gather the resulting data.

Once initialization has been performed, the state transitions to the RUNEXTERNAL state. This state
calls MATLAB with the appropriate parameters needed to run the optimizer using the FminconOptimiza-
tionDriver MATLAB function, a driver function tailored to fmincon described below. At this point, control
for the optimization process has been transferred to MATLAB. The fmincon optimizer makes calls back into
GMAT when it needs to collect data from the optimizer subsequence. These calls are passed to the Exe-
cuteCallback() method registered in the initialization process, above. ExecuteCallback() uses the Optimize
command to run the nested state transitions shown in the �gure. The nested states start by setting up and
running the mission subsequence, performed in the NOMINAL state. Once the subsequence has been run,
the data gathered during the run are collected and any processing needed on the GMAT side is performed.
This data collection is performed in the CALCULATING state. This completes the iteration of the nested
state machine; the nested state is set back to NOMINAL in preparation for the next call from MATLAB.
The collected data are passed to MATLAB, and used by fmincon to determine the next action to be taken.
If fmincon has not yet found an optimal solution, it calculates new values for the variables, and passes them
into GMAT for another pass through the nested state machine. This process repeats until fmincon has found
a solution or reached another terminating condition.

Once fmincon has completed execution, it sends an integer �ag to GMAT indicating how the optimization
process was terminated3 and returns control to GMAT. This return of control results in a transition into
the FINISHED state. GMAT performs the tasks required at the end if the optimization, and then continues
running the mission sequence. Details of all of these steps are provided in the discussion discussion of fmincon
optimization below.

25.6.3.2 Class Hierarchy for the External Optimizers

External optimizers are coded using the classes shown in Figure 25.7. One set of external optimizers, the
functions in the Optimization Toolbox, is accessed using the MATLAB interface built into GMAT. Those
functions, in turn, use calls through the GmatServer code to access spacecraft speci�c models in GMAT.
Future extensions to GMAT may use other interfaces for external optimizers.

25.6.3.3 The ExternalOptimizer Class

All external optimizers are derived from the ExternalOptimizer class. The design illustrated in Figure 25.7
shows this class, along with one subclass, the FminconOptimizer, and the interfaces used to communicate
with MATLAB. When necessary, similar interfaces will be written for communications with other external
programs. External optimizers add the functionality needed to open the interfaces to the external programs.
Classes derived form this class implement the state transitions functions used in the external optimization
nested state machine. The ExternalOptimizer class elements are described here:

Class Attributes
3See the Optimization Toolkit documentation for the meaning of this �ag's values; in general, if the �ag is greater than zero,

the optimization process was successful.

Draft: Work in Progress
214 CHAPTER 25. SOLVERS

Figure 25.7: GMAT Classes Used with External Optimizers

• std::string sourceType: String indicating the type of external interface that is used. The only
external interface supported in the current code is a MATLAB interface, so this string is always set to
�MATLAB� in the current GMAT code.

• bool sourceReady: A �ag indicating the state of the interface; this �ag is set to true if the interface
was opened successfully and the supporting structures needed by the interface were found4.

• outSource: A pointer to the Interface object that is used to make calls to the external interface.

• inSource: A pointer to the Interface object that is used to receive calls from the external interface5.

All external optimizers must provide implementations of these pure virtual methods:

Abstract Methods
4An example of the �supporting structures�: if the external interface is an FminconOptimizer, then the MATLAB system

and the Optimization Toolkit must both be available for use, and the MATLAB �les that establish the calls into GMAT must
also be accessible from MATLAB.

5In the current code, two pointers are necessary: one to a MatlabInterface object, and a second to the GmatServer used for
calls from MATLAB to GMAT. Future builds may combine these interfaces.

Draft: Work in Progress
25.6. OPTIMIZERS 215

• bool OpenConnection(): The method used to open the interfaces between GMAT and the external
program. This method, called during initialization, opens the interface and veri�es that the external
program is ready to interact with GMAT.

• void CloseConnection(): Closes the connections to the external program.

• bool Optimize(): Calls the external optimizer, starting the optimization process. When the process
terminates, this method also terminates, returning a true value if the process reported success and a
false value if the process failed.

Note that in both of the connection con�guration methods, the interface interaction preserves the interface
state as needed for other objects: for example, if the interface is already open either at the GMAT level
because of user interactions or from previous initialization, then it does not open again; the open interface
is used. Similarly, the interface is closed only if it is not in use elsewhere � either globally by GMAT, or by
another object that is still using the interface.

25.6.3.4 The FminconOptimizer Class
Fmincon is an implementation of sequential quadratic programming, implemented in MATLAB. GMAT
interfaces with fmincon using a class, the FminconOptimizer class, to coordinate the calls to MATLAB to
access the optimizer. For the purposes of this discussion, the MATLAB optimizer fmincon will be referenced
by the MATLAB function name, �fmincon�; the GMAT class that wraps that optimizer for use by GMAT
will be referenced by the class name, �FminconOptimizer.�

The class members for the FminconOptimizer are described here.

Class Attributes

• GmatCommand *callbackClass: A class that implements the ExecuteCallback method used by
the external process.

• StringArray fminconOptions: The table of parameters that can be set on the fmincon optimizer.

• StringArray optionValues: The current settings for the fmincon options.

Each FminconOptimizer contains the following methods, which have default implementations:

Methods

• bool Optimize(): The entry point for fmincon based optimization, this method is used to call MAT-
LAB with the settings needed for fmincon.

• bool OpenConnection(): If necessary, launches the MATLAB engine and starts the GmatServer,
and then sets the engine pointer on the FminconOptimizer.

• void CloseConnection(): If appropriate, closes the MATLAB engine and/or the GmatServer.

• SolverState AdvanceState(): This method is used to run the outer state machine. It manages 3
states: the INITIALIZING state, the RUNEXTERNAL state, and the FINISHED state.

• std::string AdvanceNestedState(std::vector<Real> vars): This method is called by the Opti-
mize command to run the nested state machine, and managed the transitions between the NOMINAL
and CALCULATING states. The input parameter here is a vector of the variable values used for the
nested state machine run. The return value for this method is the resultant data from the nested run,
serialized for transport to the external process.

Draft: Work in Progress
216 CHAPTER 25. SOLVERS

• void CompleteInitialization(): The method run in INITIALIZING state, which sets the callback
class pointer for the GmatInterface and prepares the GMAT side of the system for optimization.

• void RunExternal(): The method run in the RUNEXTERNAL state which builds the data stores
needed for the optimization loop, and then calls Optimize to hand program control to MATLAB.

• void RunNominal(): The method that sets up the data structures for a run of the optimizer sub-
sequence. The Optimize command uses AdvanceState to run this method immediately before running
the optimization subsequence.

• void CalculateParameters(): The method that gathers the resultant data from the subsequence
run and massages it into form for transport to MATLAB.

• void RunComplete(): The method that �nalizes the optimization, writing resultant data to the
solver log �le and releasing any temporary data structures that were used in the optimization process.

25.6.3.5 Interface Classes: Details for the FminconOptimizer

Figure 25.8: Interface Classes used by the FminconOptimizer

The current implementation of interfaces in GMAT used to communicate with MATLAB are shown in
Figure 25.86. Details of this implementation are provided in Chapter 18. These paragraphs point out the
pertinent features used when running an external optimizer.

The Optimize command, described later, is used to control the state transitions used when running the
state machine. This command is used to advance the state machine by calling the AdvanceState method on
the optimizer. External optimizers use a state, the RUNEXTERNAL state, to pass control from GMAT to
the external process. The Optimize command implements a method named ExecuteCallback which provides
the entry point from the external process back into the GMAT system so that spacecraft modeling commands

6There are currently two separate MATLAB interfaces, and both are used for this work. The interface from MATLAB to
GMAT uses code from the wxWidgets library. Because of this implementation, external optimizers running in MATLAB cannot
be used with the command line versions of GMAT.

Draft: Work in Progress
25.6. OPTIMIZERS 217

Table 25.1: Options for the FminconOptimizer Solver
Option Type Values Description
Di�MaxChange Real value > 0.0 Maximum allowed change in the

variables.
Di�MinChange Real 0.0 < value <=

Di�MaxChange
Minimum allowed change in the
variables.

MaxFunEvals Integer value > 0 Maximum number of function
evaluations before terminating.

MaxIter Integer value > 0
TolX Real value > 0.0 Variable change tolerance required to

declare convergence.
TolFun Real value > 0.0 Gradient tolerance required to declare

convergence.
DerivativeCheck String On, O� Toggle for fmincon derivative checking.
Diagnostics String On, O� Toggle used to turn dignostics on for

fmincon.
Display String Iter, O�, Notify,

Final
Level of output generated from fmincon.

GradObj String On, O� Toggle to turn on gradients calculated in
GMAT.

GradConstr String On, O� ???

can be executed buy the external process. The GmatInterface contains members designed to manage this
callback process. These members, a pointer and several methods, are described here7:

Class Attributes
• GmatCommand *callbackClass: A class that implements the ExecuteCallback method used by

the external process.

Methods
• void RegisterCallbackServer(GmatCommand *cbClass): Method used to identify the com-

mand that implements ExecuteCallback.
• void ExecuteCallback(): The method called from the GMAT server to run the callback method.
• void PutCallbackData(std::string data): Method used to set the input data for the callback

function. For optimization, this method is called to pass in the variable data.
• char* GetCallbackResults(): Method used to retrieve the results of the callback. For optimization,

this method retrieves the value of the objective function and constraints, and other optional data when
it becomes available.

The entry point to the optimization process is the Optimize command, described below. When this
command is executed, the FminconOptimizer refreshes the data needed for optimization, and passes that
data across the interface to MATLAB. These data are stored in the FminconOptimizer's

There are many di�erent parameter settings available for MATLAB's fmincon optimizer. Table 25.1 shows
the fmincon options supported by GMAT. The option table is contained in the fminconOptions StringArray.
Settings for these options are collected in the optionValues member and passed from GMAT into MATLAB
when the optimization loop starts execution.

7Note that this is not the full description of the GmatInterface class. That description is in Chapter 18.

Draft: Work in Progress
218 CHAPTER 25. SOLVERS

25.6.3.6 Control Flow in the FminconOptimizer

Figures 25.9a through 25.9c show the sequence of method calls made on the GMAT objects to run the
MATLAB based fmincon optimizer. The Optimization Toolbox contains several other optimization functions
that may be incorporated into future versions of GMAT if the need arises; they will use a similar control
�ow when implemented.

Figure 25.9a: Initialization Call Sequence for MATLAB's fmincon Optimizer

The event sequence shown in these �gures consists of two pieces. Initialization (Figure 25.9a) is used to
set all of the object pointers in place that are needed for the optimization, and to prepare the optimizer's
internal data structures for the optimization process. This step includes the initialization and validation
of the interfaces used to access the external optimizer. In the illustrated example, the input and output
interfaces GMAT uses to communicate with MATLAB are started, and the MATLAB side of the interface
validates the presence of the MATLAB scripts and functions needed to run the optimizer. This step is
performed when the GMAT Sandbox initializes the mission sequence prior to a run.

Once initialization has completed, the Sandbox starts executing the mission sequence. The mission
sequence proceeds until the Optimize command is ready to be run. Figure 25.9b picks up at that point, and
shows the steps taken to perform the optimization with fmincon from within the control sequence. These
steps include the execution of the nested state machine, described shortly. Once the sequence shown in this
�gure �nishes running, the optimization process has completed, and the remainder of the mission control
sequence is run.

The details of the nested state machine run, including the execution of the optimizer subsequence, are
shown in Figure 25.9c. When ExecuteCallback() is called on the Optimize command, the command queries

Draft: Work in Progress
25.6. OPTIMIZERS 219

Figure 25.9b: Execution Call Sequence for MATLAB's fmincon Optimizer

Draft: Work in Progress
220 CHAPTER 25. SOLVERS

Figure 25.9c: FminconOptimizer Nested State Transition Details

Draft: Work in Progress
25.6. OPTIMIZERS 221

the FminconOptimizer to determine the current state of the nested state machine. The returned state should
be either INITIALIZING or NOMINAL.

The action taken when the nested state is in the INITIALIZING state is not shown in the �gure. When
that state is encountered, the Optimize command calls AdvanceNestedState on teh FminconOptimizer and
the FminconOptimizer executes its CompleteInitialization() method. The nested state machine then tran-
sitions into the NOMINAL state. Upon return from this process, the Optimize command executes the
StoreLoopData() method, which saves the spacecraft state data at the start of the optimization loop. It
then proceeds to run the nested state machine.

When the nested state is in the NOMINAL state, the Optimize command calls the FminconOptimizer's
AdvanceNestedState() method, which executes the RunNominal() method to prepare the optimizer for ex-
ecution of a nominal run through the subsequence. The state of the nested state maching changes from
NOMINAL to CALCULATING. Upon the return from the AdvanceNestedState() method, the Optimize
command sets the GMAT objects up for a run of the optimization subsequence by executing the ResetLoop-
Data() method. It then begins execution of the optimization subsequence.

The execution of the optimizer subsequence depends on the order of the commands contained in the
subsequence. All GMAT commands include a method, Execute(), that �re the command. Like ann GMAT
command sequences and subsequences, the commands in the optimization subsequence are stored as a linked
list of GmatCommand objects. The Optimize command runs the subsequence by starting at the begining of
this linked list and �ring the Execute() method on each command in the list. The list is navigated using the
GetNext() method on the command. The subsequence is terminated when the GetNext() method returns a
pointer to the Optimize command.

The actions shown in Figure 25.9c should be treated as a guideline for how the optimization speci�c
commands in the subsequence interact with the FminconOptimizer. Each time a Vary command is executed,
it retrieves its variable value from the FminconOptimizer using the GetSolverVariable() method and sets the
value of the associated variable. The Execute() method on the Minimize command evaluates the objective
function, and sends the resulting value to the FmminconOptimizer using the SetResultValue() method.
Similarly, when a NonLinearConstraint command is executed, the constraint is evaluated and the value is
sent to the FminconOptimizer using SetResultValue(). The order in which these actions occur is the order
in which they appear in the subsequence.

When the mission subsequence has �nished execution, the Optimize command retrieves the results of the
subsequence run from the FminconOptimizer and returns these data to the GmatInterface so that they can
be passed back to MATLAB.

25.6.3.7 MATLAB Support Files
The fmincon code in MATLAB is driven from a set of three high level MATLAB function �les and a fourth
lower level function. The three high level �les implement these functions:

1. GmatFminconOptimizationDriver.m manages the call into the optimizer from GMAT

2. EvaluateGMATObjective.m gathers data and executes the callback function into GMAT, obtaining
the data calculated in GMAT and returning the value of the objective function and optionally its
gradient

3. EvaluateGMATConstraints.m accesses the values for the constraints, returned in the call to Eval-
uateGMATObjective.

These three MATLAB �les are listed here. GMAT starts a fmincon run by calling the GmatFminconOp-
timizationDriver function as a MATLAB function. The actual MATLAB function syntax is encapsulated
in the FminconOptimizer; the user does not set up the function objects or the CallFunction commands.
GmatFminconOptimizationDriver takes four inputs: a vector containing the initial values of the variables
that are being optimized, an array containing the options speci�ed by the user for the optimizer, as described

Draft: Work in Progress
222 CHAPTER 25. SOLVERS

in Table 25.1, and two vectors de�ning the lower and upper bounds on the variables. The function returns
a vector to GMAT containing the optimized values of the variables. The MATLAB �le8 is listed here:

function [X] = GmatFminconOptimizationDriver(X0, Opt, Lower, Upper)

% function GmatFminconOptimizationDriver(X0, Opt, Lower, Upper)
%
% Description: This function is called from GMAT to drive the fmincon
% optimizer.
%
% Variable I/O
% ---
% Variable Name I/0 Type Dimens. Description/Comments
%
% X0 I array nx1 Column vector of
% initial values for
% independent
% variables
%
% Opt I string Name of GMAT
% FminconOptimizer
% object. This is the
% the options structure used
% by fmincon.
%
% Lower I array nx1 Lower bound on the
% values of X
%
% Upper I array nx1 Upper bound on the
% values of X
%
% X O array nx1 Column vector of
% final values for
% independent
% variables
%
% Notes: n is the number of independent variables in X
% neq is the number of nonlinear equality constraints
% nineq is the number of nonlinear inequality constraints
% ---
%
% External References: fmincon, EvaluateGMATObjective,
% EvaluateGMATConstraints, CallGMATfminconSolver
%
% Modification History
%
% 06/15/06, D. Conway, Created

8This �le, and all of the other MATLAB �les, are read in verbatim from the working �les to ensure accuracy in the
transcription. If you are missing any of the required �les, they can be reproduced from the text presented here.

Draft: Work in Progress
25.6. OPTIMIZERS 223

% --- Declare global variables
global NonLinearEqCon NLEqConstraintJacobian NonLinearIneqCon ...

NLIneqConstraintJacobian

X = fmincon(@EvaluateGMATObjective, X0, [], [], [], [], Lower, Upper, ...
@EvaluateGMATConstraints, Opt)

% Apply the converged variables
CallGMATfminconSolver(X, 'Converged')

MATLAB's fmincon optimizer uses two user supplied MATLAB functions when optimizing a problem: one
that evaluates the objective function and, optionally, its gradient, and a second that evaluates problem
constraints and the related Jacobians. For GMAT's purposes, those two functions are de�ned in the other
two �les listed above, EvaluateGMATObjective.m and EvaluateGMATConstraints.m.

EvaluateGMATObjective passes the values of the variables calculated in fmincon to GMAT using the low
level CallGMATfminconSolver function, described below, and waits for GMAT to return the data calculated
o� of these variables. The variables passed to GMAT are used when running the commands in the solver
subsequence. When GMAT receives the call from MATLAB and sets the current variable values in the
FminconOptimizer used for the mission. Then the mission subsequence is executed one command at a time.
Vary commands in the subsequence query the FminconOptimizer for the corresponding variable values,
and the NonLinearConstraint and Minimize, and, eventually, Gradient and Jacobian commands set their
calculated values on the FminconOptimizer as they are executed. Once the solver subsequence �nishes
running, these calculated values are returned to MATLAB in the return vectors de�ned for the function.
Here is the MATLAB �le that implements EvaluateGMATObjective:

function [F,GradF] = EvaluateGMATObjective(X)

% function [F,GradF] = EvaluateGMATObjective(X)
%
% Description: This function takes the nondimensionalized vector of
% independent variables, X, and sends it to GMAT for evaluation of the
% cost, constraints, and derivatives. If derivatives are not calculated
% in GMAT, then an empty matrix is returned.
%
% Variable I/O
% ---
% Variable Name I/0 Type Dimens. Description/
% Comments
%
% X I array n x 1 Column vector
% of Independent
% variables
%
% F O array 1 x 1 Cost function
% value
%
% GradF O array n x 1 or [] Gradient of
% the cost f'n
%
% NonLinearEqCon O global array neq x 1 or [] Column vector
% containing
% nonlinear

Draft: Work in Progress
224 CHAPTER 25. SOLVERS

% equality
% constraint
% values.
%
% JacNonLinearEqCon O global array n x neq or [] Jacobian of the
% nonlinear
% equality
% constraints
%
% NonLinearIneqCon O global array nineq x1 or [] Column vector
% containing
% nonlinear
% inequality
% constraint
% values.
%
% JacNonLinearIneqCon O global array n x ineq or [] Jacobian of the
% nonlinear
% inequality
% constraints
%
% Notes: n is the number of independent variables in X
% neq is the number of nonlinear equality constraints
% nineq is the number of nonlinear inequality constraints
% ---
%
% External References: CallGMATfminconSolver
%
% Modification History
%
% 06/13/06, S. Hughes, Created

% --- Declare global variables
global NonLinearIneqCon, JacNonLinearIneqCon, NonLinearEqCon, ...

JacNonLinearEqCon

% --- Call GMAT and get values for cost, constraints, and derivatives
[F, GradF, NonLinearEqCon, JacNonLinearEqCon, NonLinearIneqCon, ...

JacNonLinearIneqCon] = CallGMATfminconSolver(X);

When control returns to MATLAB from GMAT, all of the data fmincon needs is available for consumption.
The value of the objective function, along with its gradient if calculated, are returned directly to fmincon.
The constraint and Jacobian data are stored in global MATLAB variables so that they can be sent to fmincon
when the optimizer requests them. The EvaluateGMATConstraints function provides the interface fmincon
needs to access these data. It is shown here:

function [NonLinearIneqCon, JacNonLinearIneqCon, NonLinearEqCon, ...
JacNonLinearEqCon] = EvaluateGMATConstraints(X)

% function [F,GradF] = EvaluateGMATConstraints(X)
%

Draft: Work in Progress
25.6. OPTIMIZERS 225

% Description: This function returns the values of the contraints and
% Jacobians. Empty matrices are returned when either a constraint type
% does not exist, or a Jacobian is not provided.
%
% Variable I/O
% ---
% Variable Name I/0 Type Dimens. Description/
% Comments
%
% X I array n x 1 Column vector of
% Independent
% variables
%
% NonLinearEqCon O global array neq x 1 or [] Column vector
% containing
% nonlinear
% equality
% constraint
% values.
%
% JacNonLinearEqCon O global array n x neq or [] Jacobian of the
% nonlinear
% equality
% constraints
%
% NonLinearIneqCon O global array nineq x1 or [] Column vector
% containing
% nonlinear
% inequality
% constraint
% values.
%
% JacNonLinearIneqCon O global array n x ineq or [] Jacobian of the
% nonlinear
% inequality
% constraints
%
% Notes: n is the number of independent variables in X
% neq is the number of nonlinear equality constraints
% nineq is the number of nonlinear inequality constraints
% ---
%
% External References: CallGMATfminconSolver
%
% Modification History
%
% 06/13/06, S. Hughes, Created

global NonLinearIneqCon, JacNonLinearIneqCon, NonLinearEqCon, ...
JacNonLinearEqCon

Draft: Work in Progress
226 CHAPTER 25. SOLVERS

The low level callback function, CallGMATfminconSolver, uses the MATLAB server interface in GMAT
to run the solver subsequence. This function is contained in the MATLAB �le shown here:

function [F, GradF, NonLinearEqCon, JacNonLinearEqCon, ...
NonLinearIneqCon, JacNonLinearIneqCon] = ...
CallGMATfminconSolver(X, status)

% function [F, GradF, NonLinearEqCon, JacNonLinearEqCon, ...
% NonLinearIneqCon, JacNonLinearIneqCon] = CallGMATfminconSolver(X)
%
% Description: This is the callback function executed by MATLAB to drive
% the GMAT mission sequence during fmincon optimization.
%
%

25.6.3.8 Scripting the fmincon Optimizer
A sample script for the FminconOptimizer is shown here:

1 %---
2 %------------------ Create core objects --------------------------
3 %---
4 Create Spacecraft Sat;
5 ...
6 Create ForceModel DefaultProp_ForceModel;
7 ...
8 Create Propagator DefaultProp;
9 GMAT DefaultProp.FM = DefaultProp_ForceModel;

10 ...
11 Create ImpulsiveBurn dv1;
12 Create ImpulsiveBurn dv2;
13 ...
14 %---
15 %-----------------Create and Setup the Optimizer------------------
16 %---
17 Create fminconOptimizer SQPfmincon
18 GMAT SQPfmincon.DiffMaxChange = 0.01; % Real number
19 GMAT SQPfmincon.DiffMinChange = 0.0001; % Real number
20 GMAT SQPfmincon.MaxFunEvals = 1000; % Real number
21 GMAT SQPfmincon.MaxIter = 250; % Real number
22 GMAT SQPfmincon.TolX = 0.01; % Real number
23 GMAT SQPfmincon.TolFun = 0.0001; % Real number
24 GMAT SQPfmincon.DerivativeCheck = Off; % {On, Off}
25 GMAT SQPfmincon.Diagnostics = On; % {On, Off}
26 GMAT SQPfmincon.Display = Iter % {Iter, Off, Notify, Final}
27 GMAT SQPfmincon.GradObj = Off; % {On, Off}
28 GMAT SQPfmincon.GradConstr = Off; % {On, Off}
29

30 %***
31 %-------------------The Mission Sequence--------------------------
32 %***
33

Draft: Work in Progress
25.7. COMMAND INTERFACES 227

34 % The optimization sequence below demonstrates how to use an SQP
35 % routine in GMAT to show that the Hohmann transfer is the optimal
36 % transfer between two circular, co-planar orbits.
37 Optimize SQPfmincon
38

39 % Vary the initial maneuver using the optimizer, and apply the maneuver
40 Vary SQPfmincon(dv1.Element1 = 0.4, {Upper = 2.0, Lower = 0.0, cm = 1, cf = 1});
41 Maneuver dv1(Sat);
42

43 % Vary the tranfer time of flight using the SQP optimizer
44 Vary SQPfmincon(TOF = 3600);
45 Propagate DefaultProp(Sat, {Sat.ElapsedSecs = TOF});
46

47 % Vary the second maneuver using the optimizer, and apply the maneuver
48 Vary SQPfmincon(dv2.Element1 = 0.4 , {Upper = 2.0, Lower = 0.0});
49 Maneuver dv2(Sat);
50

51 % Apply constraints on final orbit, and define cost function
52 NonLinearConstraint SQPfmincon(Sat.SMA = 8000);
53 NonLinearConstraint SQPfmincon(Sat.ECC = 0);
54 Minimize SQPfmincon(dv1.Element1 + dv1.Element2);
55

56 EndOptimize

25.7 Command Interfaces
The GMAT solvers are driven from a number of commands tailored to the solver algorithms. The solver
speci�c commands are shown in Figure 25.10. Each category of solver is used to drive a sequence of com-
mands that starts with the keyword associated with the solver: �Target� for the targeters, �Iterate� for the
scanners, and �Optimize� for the optimizers. The solver used for the sequence is identi�ed on this initial
line. Each solver sequence is terminated with a corresponding end command: �EndTarget� for the targeters,
�EndIterate� for the scanners, and �EndOptimize� for the optimizers. The commands enclosed between these
keywords de�ne the variables used in the solver, the conditions that the solver is designed to evaluate, an-
cillary conditions that need to be met (e.g. constraints for the optimizers), and the sequence of events that
the model runs when solving the scripted problem. This section describes the features of the commands that
interact directly with the Solvers to solve mission speci�c tasks. The general layout and methods used by
all commands are provided in Chapter 23.

25.7.1 Commands Used by All Solvers
Figure 25.10 shows the classes used by the GMAT solvers. Classes shown in purple on this �gure are used by
targeters, in blue by scanners, and in green by optimizers. The classes shown in yellow are base classes, and
the command in orange � the Vary command � is used by all solvers. The solver speci�c commands, shown
in Figure 25.11, are described in the following paragraphs. The scripting and options for the commands are
presented �rst, followed by a brief description of the steps take during initialization and execution of the
commands.

25.7.1.1 Solver Loop Commands
Each solver de�nes a mission subsequence that starts with a command, identi�ed by the keyword �Target�,
�Iterate�, or �Optimize�, followed by the name of an instantiated solver. These commands are collectively

Draft: Work in Progress
228 CHAPTER 25. SOLVERS

Figure 25.10: Command Classes used by the Solvers

called the �loop entry commands� in the text that follows. The commands that are evaluated when running
the solver subsequence follow this line in the order in which they are executed. The solver subsequence is
terminated with a corresponding loop exit command, one of �EndTarget�, �EndIterate�, or �EndOptimize�,
selected to match the loop entry command line. The format for a solver loop can be written

<LoopEntryCommand> <SolverName>
<Solver Subsequence Commands>

<LoopExitCommand>

All solver subsequences must contain at least one Vary command so that the solver has a variable to use
when running its algorithm. Targeter commands also require at least one Achieve command, specifying the
goal of the targeting. Scanners require at least one Accumulate command, de�ning the data that is collected
during the iterative scan driven by the algorithm. Optimizers are required to de�ne one � and only one �
objective function, using the Minimize command.

When the Solver hierarchy includes the option to drive the solution process from an external solver, the
loop entry command must also supply a method used for the external process to call back into GMAT to
run the solver subsequence. This method, ExecuteCallback(), is currently only supported by the optimizers.

The solver loop command members shown in the �gure �ll these roles:

Data Elements
• std::string iteratorName, targeterName, optimizerName: The name of the solver used for this

solver loop.

• Solver* iterator, targeter, optimizer: The Solver used for this solver loop.

Methods
• bool Initialize(): Sets member pointers, initializes the solver subsequence, and then initalizes the

Solver.

• bool Execute(): Runs the Solver state machine, and executes the solver subsequence when the state
machine requires it.

Draft: Work in Progress
25.7. COMMAND INTERFACES 229

Figure 25.11: Command Classes Required by All Solvers

• bool ExecuteCallback(): For external solvers9, this method runs the nested state machine through
one iteration.

• void StoreLoopData(): Constructs objects used to store the object data at the start of a Solver
subsequence, so that the data can be reset each time the subsequence is run. These objects are
initialized to the values of the objects at the start of the execution of the Solver loop.

• void ResetLoopData(): Resets the subsequence data to their initial values prior to the run of the
solver subsequence.

• void FreeLoopData(): Releases the objects constructed in the StoreLoopData() method. This
method is called after a Solver has completed its work, immediately before proceeding to the next
command in the mission sequence.

Initialization During initialization, the loop entry commands use the Sandbox's local object map to
�nd the solver used in the loop. That solver is cloned and the clone is stored in a local variable. The loop
entry command then walks through the list of commands in its subsequence and passes the pointer to the
solver clone into each command that needs the pointer; these commands are those shown as solver speci�c
in Figure 25.10. The branch command Initialize() method is then called to complete initialization of the
commands in the solver subsequence.

Execution The loop entry commands execute by performing the following series of events:

1. If the �commandExecuting� �ag is false:
Store the current states for all spacecraft and formations
Retrieve and store the entry data for the solver

9Currently only applicable for Optimizers

Draft: Work in Progress
230 CHAPTER 25. SOLVERS

Set the �commandExecuting� �ag to true and the and �commandComplete� �ag to false
Retrieve the current solver state

2. If the command is currently running the solver subsequence, take the next step in that run. This
piece is required to let the user interrupt the execution of a run; when the subsequence is running, it
periodically returns control to the Sandbox so that the user interface can be polled for a user interrupt.

3. If the subsequence was not running, perform actions that the subsequence needs based on the current
solver state. These actions may be restoring spacecraft data to the entry data for the solver loop,
starting a run in the mission subsequence, preparing to exit the solver loop, other algorithm speci�c
actions, or taking no action at all.

4. Call AdvanceState() on the solver.

5. Write out solver report data.

6. Return control to the Sandbox.

25.7.1.2 Vary
The Vary command is used by all solvers to de�ne the variables used by the solver, along with parameters
appropriate to the variable. A typical Vary command has the format

Vary <SolverName>(<variable> = <initialValue>, {<parameter overrides>})

The <SolverName> should be the same solver object identi�ed when the solver loop was opened. The solver
must be identi�ed in each Vary command, so that nested solvers can assign variables to the correct solver
objects10.

The Vary command has the following parameters that users can override:

• Pert: De�nes the perturbation applied to the variable during targeting or scanning. This parameter
has no e�ect when using the FminconOptimizer. (TBD: the e�ect for other optimizers.)

• Lower (Default: Unbounded): The minimum allowed value for the variable.

• Upper (Default: Unbounded): The maximum allowed value for the variable.

• MaxStep (Default: Unbounded): The largest allowed singel step that can be applied to the variable.

• AdditiveScaleFactor (Default: 0.0): The additive factor, A, de�ned in equation 25.5.

• MultiplicativeScaleFactor (Default: 1.0): The multiplicative factor, M , de�ned in equation 25.5.

Parameters are set by assigning values to these keywords. For example, when setting a perturbation on a
maneuver component Mnvr.V, using the targeter dcTarg, the scripting is

Vary dcTarg(Mnvr.V = 1.5, {Pert = 0.001});

where the initial value for the velocity component of the maneuver is 1.5 km/s, and the targeter applies a
perturbation of 1 m/s (0.001 km/s) to the maneuver when running the targeting algorithm.

The scale factor parameters are used to rescale the variables when passing them to the solvers. Scaling
of the variables and other elements in a solver algorithm can be used to ensure that the steps taken by a
targeter or optimizer are equally sensitive to variations in all of the parameters de�ning the problem, and

10A similar constraint is applied to all solver commands; identifying the solver removes the possibility of misassigning solver
data.

Draft: Work in Progress
25.7. COMMAND INTERFACES 231

therefore more quickly convergent. When a variable is passed to a solver, the actual value sent to the solver,
X̂i, is related to the value of the variable used in the solver subsequence, Xi, by the equation

X̂i =
Xi + A

M
(25.5)

where A is the value set for the AdditiveScaleFactor, and M is the value of the MultiplicativeScaleFactor.
This equation is inverted when the variable is set from the solver, giving

Xi = MX̂i −A (25.6)
All solvers work with the scaled value of the variable data. When a variable value is retrieved from the Solver,
the Vary command applies equation 25.6 to the retrieved value before using it in the mission subsequence.

The Vary command members shown in the �gure �ll these roles:

Data Elements
• std::string solverName: The name of the solver that uses this variable.

• Solver *solver: A pointer to the Solver.

• std::string variableName: The name of the variable fed by this command.

• <see text> initialValue: The initial value for the variable. This can be a number, a piece of object
data, a Parameter, or an array element.

• Real currentValue: The current or most recent value of the variable.

Methods
• bool InterpretAction(): Parses the command string and builds the references needed during initial-

ization and execution.

• bool Initialize(): Sets the member pointers and registers the variables with the Solver.

• bool Execute(): Queries the Solver for the current variable values, and sets these values on the
corresponding objects.

• bool RunComplete(): Cleans up data structures used in the solver loop.

Initialization At initialization, the Vary command registers its variable with the solver by calling the
SetSolverVariable() method. The scaled initial value of the variable (normalized using equation 25.5), along
with the associated parameters, are all passed into the solver with this call. That method returns the solver's
integer index for the variable, which is stored in a member of the Vary command.

Execution When the Vary command executes, it queries the solver for the current value of the variable
using the GetSolverVariable() method. That method passes back the value of the variable that should be
used in the current run of the solver subsequence. The value is unnormalized using equation 25.6 and then
used to set the value of the variable for later use in the solver subsequence.

25.7.2 Commands Used by Scanners
Scanners are used to collect statistical data by iterating the scanner subsequence for a user speci�ed number
of passes. The data collected is identi�ed using the Accumulate command, shown in Figure 25.12 and
described here.

TBD � This section will be completed when the �rst scanner is scheduled for implementation.

Draft: Work in Progress
232 CHAPTER 25. SOLVERS

Figure 25.12: Command Classes Used by Scanners

25.7.3 Commands Used by Targeters
Targeters are used to change the variables so that the mission reaches some user speci�ed set of goals. These
goals are identi�ed using the Achieve command, shown in Figure 25.13 and described here.

Figure 25.13: Command Classes Used by Targeters

25.7.3.1 Achieve
The Achieve command is used by targeters to de�ne the goals of the targeting sequence. Achieve commands
occur inside of a targeter subsequence. They set the targeter goals using scripting with the syntax

Achieve <TargeterName>(<goalParameter> = <goalValue>, {Tolerance = ToleranceValue})

The targeter named in the command must match the targeter named in the Target command that starts
the targeter subsequence. The goalParameters is a GMAT Parameter that produces a Real value. The

Draft: Work in Progress
25.7. COMMAND INTERFACES 233

GoalValue and the ToleranceValue each consist of either a number, a Parameter, or an array element, again,
producing a Real number.

The Achieve command members shown in the �gure �ll these roles:

Data Elements

• std::string targeterName: The name of the Targeter associated with this goal.

• Solver *targeter: The Targeter that is trying to meet the goal speci�ed by this command.

• std::string goalName: The name of the parameter that is evaluated for this goal.

• Parameter *achieveParm: The parameter that is evaluated for comparison with the goal.

• Real goal: The goal of the targeting run associated with the achieveParm.

• Real tolerance: The measure of how close the achieved value needs to be to the goal.

Methods

• bool InterpretAction(): Parses the command string and builds the references needed during initial-
ization and execution.

• bool Initialize(): Sets the member pointers and registers the goals with the Targeter.

• bool Execute(): Evaluates the value of the achieveParm, and sends this value to the Targeter.

Initialization During Initialization, the Achieve command sets its internal member pointers and reg-
isters with the Targeter.

Execution When the Achieve command is executed, the parameter that calculates the current value
for the targeter goal is evaluated, and that value is sent to the Targeter.

25.7.4 Commands Used by Optimizers
All optimizers require exactly one Minimize command. Optimizers may also specify other data used in
optimization; speci�cally, commands exist to specify nonlinear constraints, gradient data, and Jacobian
data.

25.7.4.1 Minimize

The Minimize command has the syntax

Minimize <OptimizerName>(<ObjectiveFunction>)

As in the other solver commands, the solver identi�ed in the command, <OptimizerName>, is the same
optimizer as was identi�ed in the loop entry command, an Optimize command in this case. The parameter
passed inside the parentheses, identi�ed as <ObjectiveFunction> here, returns a scalar Real value that
represents the current value of the objective function. This function is contained in a GMAT a Variable.

The Minimize command members shown in the �gure �ll these roles:

Draft: Work in Progress
234 CHAPTER 25. SOLVERS

Figure 25.14: Command Classes Used by Optimizers

Data Elements

• std::string optimizerName: The name of the Optimizer that owns this objective.

• Solver *optimizer: A pointer to the Optimizer.

• std::string objectiveName: The name of the variable used to evaluate the objective function.

• Variable *objective: The variable used for the objective function.

• Real objectiveValue: The current or most recent value of the objective function.

Methods

• bool InterpretAction(): Parses the command string and builds the references needed during initial-
ization and execution.

• bool Initialize(): Sets the member pointers and registers the objective function with the Optimizer.

• bool Execute(): Evaluates the value of the objective function, and sends this value to the optimizer.

Initialization The Optimizer used by the Minimize command is set by the Optimize loop entry com-
mand prior to initialization of this command. When initialization is called for the Minimize command, the
Variable providing the objective function value is found in the Sandbox's local object map and the pointer
is set accordingly. The Minimize command then registers with the Optimizer using the SetSolverResults
method. The Optimizer sets its member data structure accordingly, and throws an exception if more than
one objective attempts to register.

Execution When the Minimize command is executed, the Real value of the objective function is
evaluated by calling the Variable's EvaluateReal method. The resulting value of the objective function is
passed to the Optimizer using the SetResultValue method.

Draft: Work in Progress
25.7. COMMAND INTERFACES 235

25.7.4.2 NonLinearConstraint
The NonlinearConstraint command has the syntax

NonlinearConstraint <OptimizerName>(<ConstraintSpecification>)

Here the OptimizerName is the name of the Optimizer identi�ed in the Optimize loop entry command.
The <ConstraintSpeci�cation> has the form

<ConstraintParameter> <operator> <ConstraintValue>

<ConstraintParameter> is a Parameter, Variable, or object property. The operator is either an equal sign
(�=�) for equality constraints, or a �<=� speci�cation for inequality constraints. The constraint value is a
Real number settig the target value of the constraint.

The NonlinearConstraint command members shown in the �gure �ll these roles:

Data Elements

• std::string optimizerName: The name of the Optimizer that owns this constraint.

• Solver *optimizer: A pointer to the Optimizer.

• std::string constraintName: The name of the object providing the constraint value.

• Parameter *constraint: The object providing the constraint value.

• Real constraintValue: The current or most recent value of the constraint.

• bool isInequality: A �ag indicating is the constraint is an inequality constraint.

• Real desiredValue: The desired value, or right hand side, of the constraint equation.

• Real tolerance: Currently unused, this is a measure of how close the calculated value for the constraint
needs to be to the actual value for equality constraints.

Methods

• bool InterpretAction(): Parses the command string and builds the references needed during initial-
ization and execution.

• bool Initialize(): Sets the member pointers and registers the constraint with the Optimizer.

• bool Execute(): Evaluates the value of the constraint, and sends this value to the optimizer.

Initialization The Optimizer used by the NonlinearConstraint command is set by the Optimize loop
entry command prior to initialization of this command. When initialization is called for the NonlinearCon-
straint command, the object that is evaluated for the constraint is retrieved from the Sandbox's local object
map. The constraint speci�cation is parsed, setting the constraint type and data in the NonlinearConstraint
command. Finally, all of the constraint information is collected and registered with the Optimizer using the
SetSolverResults method.

Execution When the NonlinearConstraint command is executed, the Real value of the constraint is
evaluated, and the resulting value of the constraint is passed to the Optimizer using the SetResultValue
method.

Draft: Work in Progress
236 CHAPTER 25. SOLVERS

25.7.4.3 Gradient
The Gradient command is used to send the gradient of the objective function to an optimizer. This command,
a future enhancement, will be implemented when state transition matrix calculations are incorporated into
GMAT.

25.7.4.4 NLIneqConstraintJacobian
This command is used to set the Jacobian of the nonlinear inequality constraints for an optimizer. This com-
mand, a future enhancement, will be implemented when state transition matrix calculations are incorporated
into GMAT.

25.7.4.5 NLEqConstraintJacobian
This command is used to set the Jacobian of the nonlinear equality constraints for an optimizer. This com-
mand, a future enhancement, will be implemented when state transition matrix calculations are incorporated
into GMAT.

Draft: Work in Progress

Chapter 26

Inline Mathematics in GMAT

Darrel J. Conway
Thinking Systems, Inc.

GMAT provides a �exible mechanism that lets users place both scalar and matrix computations into
the command sequence for a mission. This mechanism is implemented in a set of classes described in this
chapter.

26.1 Scripting GMAT Mathematics
Mathematics in GMAT scripts follow the conventions established in MATLAB; an equation consists of an
object on the left side of an equals sign, with an equation on the right. Equations can be entered either in
script �les, or using a panel on the graphical user interface. Parentheses are used to set the precedence of
operations when the normal precedence rules are not valid. Table 26.1 lists the operators implemented in
GMAT. The table is arranged in order of operator precedence; operators higher in the table are evaluated
before operators that appear lower in the table. Users can override this order through selective use of
parentheses.

Mathematics in GMAT are scripted using the same syntax as assignments. Three samples of the scripting
for the operations in Table 26.1 are provided here to and discussed in the design presentation to help explain
how GMAT manipulates its internal data structures to perform scripted mathematics.

Example 1: Basic Arithmetic
In this simplest example, a user needs to write script to perform the calculation of the longitude of periapsis,

Π = Ω + ω (26.1)
for the spacecraft named sat. The scripting for this calculation is straight forward:

Create Spacecraft sat;
Create Variable arg
GMAT arg = sat.RAAN + sat.AOP

Example 2: More Complicated Expressions
This snippet calculates the separation between two spacecraft, using the Pythagorean theorem:

∆R =
√

(X1 −X2)2 + (Y1 − Y2)2 + (Z1 − Z2)2 (26.2)

237

Draft: Work in Progress
238 CHAPTER 26. INLINE MATHEMATICS IN GMAT

Table 26.1: Operators and Operator Precedence in GMAT
Operator or
Function

Implemented
Cases

Comments Example

Evaluate
Conversion
Functions

DegToRad,
RadToDeg

Converts between
radians and degrees

DegToRad(sat.RAAN)

Evaluate Matrix
Operations

transpose and ',
det, inv and ^(-1),
norm

mat', det(mat)

Evaluate Math
Functions

sin, cos, tan, asin,
acos, atan, atan2,
log, log10, exp,
sqrt

Angles in the trig
functions are in radians

sin(DegToRad(sat.TA))

Exponentiation ^ Powers are any real
number

sin(radTA)^0.5

Multiplication and
Division

* / sat.RMAG / sat.SMA

Addition and
Subtraction

+ - sat.RAAN + sat.AOP

This is a useful example because, as we will see, it exercises the parser to ensure that operations are performed
in the correct order. The script for this example is, again, pretty simple:

Create Spacecraft sat1, sat2;
Create Variable sep
GMAT sep = sqrt((sat1.X-sat2.X)^2 + (sat1.Y-sat2.Y)^2 + (sat1.Z-sat2.Z)^2)

Example 3: Matrix Computations
This �nal example is more complex, and exercises both operator ordering and matrix computations to
calculate a component of the analytic gradient of a function used in optimization. This script snippet assumes
that GMAT can calculate the State Transition Matrix and provide users with access to the corresponding
3x3 submatrices of it. The scripting for that calculation is:

% This script snippet uses the following definitions for pieces of the
% State Transition Matrix (STM):
% Sat.Phi is a 6x6 matrix that is the spacecraft STM
% Sat.PhiA is the upper left 3x3 portion of the STM
% Sat.PhiB is the upper right 3x3 portion of the STM
% Sat.PhiC is the lower left 3x3 portion of the STM
% Sat.PhiD is the lower right 3x3 portion of the STM

Create Spacecraft Sat1, Sat2
Create Array Svec[3,1] Svecdot[3,1] S[1,1] dSdotdR[1,3]

For I = 1: 100
% Step the spacecraft
Propagate LowEarthProp(Sat1,Sat2);

% Calculate the relative position and velocity vectors

Draft: Work in Progress
26.2. DESIGN OVERVIEW 239

Figure 26.1: Tree View of the Longitude of Periapsis Calculation

GMAT Svec(1,1) = Sat2.X - Sat1.X;
GMAT Svec(2,1) = Sat2.Y - Sat1.Y;
GMAT Svec(3,1) = Sat2.Z - Sat1.Z;
GMAT Svecdot(1,1) = Sat2.VX - Sat1.VX;
GMAT Svecdot(2,1) = Sat2.VY - Sat1.VY;
GMAT Svecdot(3,1) = Sat2.VZ - Sat1.VZ;

% Calculate range
GMAT S = norm(Svec);

% Calculate the change in the range rate due to a change in the
% initial position of sat1
GMAT dSdotdR = 1/S*(Svecdot' - Svec'*Svecdot*Svec'/S^2)*(- Sat1.PhiA)...

+ Svec'/S*(-Sat1.PhiC);
EndFor;

The last expression here, dsDotdR, will be used in the design discussion.

26.2 Design Overview
When GMAT encounters the last line of the �rst script snippet:

GMAT arg = sat.RAAN + sat.AOP

it creates an assignment command that assigns the results of a calculation to the variable named arg. The
right side of this expression � the equation � is converted into GMAT objects using an internal class in
GMAT called the MathParser. The MathParser sets up custom calculations by breaking expressions � like
the ones scripted in the preceding section � into a tree structure using a recursive descent algorithm. This
decomposition is performed during script parsing when the user is running from a script �le, and during
application of user interface updates if the user is constructing the mathematics from the GMAT graphical
user interface. GMAT stores the tree representation of the mathematics in an internal object called the
MathTree. During script execution, the MathTree is populated with the objects used in the calculation
during mission initialization in the Sandbox. The equation is evaluated when the associated Assignment
command is executed by performing a depth-�rst traversal of the tree to obtain the desired results. The
algorithms implemented here are extensions of the approach presented in chapter 40 of [schildt].

The tree based structure of the computations enforces the operator precedence rules tabulated above. In
this section the construction and evaluation of the trees for the examples is presented, and the classes used in
this process are introduced. The sections that follow this overview present the classes in a more systematic
manner, discuss how the scripting is parsed to create the GMAT objects used in evaluation, and then tie
these pieces together by discussing how the constructed objects interact as a program executes.

Draft: Work in Progress
240 CHAPTER 26. INLINE MATHEMATICS IN GMAT

Figure 26.2: Tree View of the Satellite Separation Calculation

Figure 26.11 shows the tree generated for the longitude of periapsis calculation scripted above. This
simplest example illustrates the layout of the tree in memory that results from a simple arithmetic expression.
The GMAT MathParser class is fed the right side of the expression from the script � in this case, that is
the string "sat.RAAN + sat.AOP". This string is passed to the recursive descent code, which breaks it
into three pieces � two expressions that can be evaluated directly, and an operator that combines these
expressions. These pieces are stored in an internal class in GMAT called the MathTree. The expressions
"sat.RAAN" and "sat.AOP" are placed into the "leaves" of the tree, while the addition operator is placed in
the top, "internal" node. The leaf nodes are all instances of a class named "MathElement", and the internal
nodes, of classes derived from a class named "MathFunction". When the assignment command containing
this construct is executed, each of the leaves of the tree is evaluated, and then combined using the code for
the addition operator.

The second example, illustrated in Figure 26.2, provides a more illustrative example of the parsing and
evaluation algorithms implemented in GMAT. This tree illustrates the equation encoded in example 2:

GMAT sep = sqrt((sat1.X-sat2.X)^2 + (sat1.Y-sat2.Y)^2 + (sat1.Z-sat2.Z)^2)

Each node in the MathTree can be one of three types: a function node, an operator node (both of these
types are embodied in the MathFunction class), or an element node (in the MathElement class). The element
nodes are restricted to being the leaf nodes of the tree; the internal nodes are all either function nodes or
operator nodes.

Each MathElement node consists of two separate pieces; a string containing the text of the expression
represented by the node, and either a pointer to the object that embodies that expression or, for constants,

1In this �gure and those that follow, the components that can be evaluated into Real numbers are drawn on elongated
octagons, and the operators are drawn in a circle or ellipse. Matrices are denoted by a three-dimensional box. Empty nodes
are denoted by black circles, and numbers, by orange squares with rounded corners.

Draft: Work in Progress
26.2. DESIGN OVERVIEW 241

Figure 26.3: Tree View of the Matrix Calculation in Example 3

a local member containing the value of the expression. The pointer member is initially set to NULL when
the MathElement node is constructed during script parsing. When the script is initialized in the GMAT
Sandbox, these pointers are set to the corresponding objects in the Sandbox's con�guration. Each time
the assignment command associated with the MathTree executes, an Evaluate() method is called on the
MathTree, as described below.

The function and operator nodes consist of several pieces as well. Each of these nodes contain subnode
pointers that identify the input value or values needed for the node evaluation, and a method that performs
the actual mathematics involved in the evaluation. The mathematical operations for each of these nodes is
coded to work on either a scalar value or a matrix; the speci�c rules of implementation are operator speci�c.

The Evaluate() method for the MathTree calls the Evaluate() method for the topmost node of the tree.
This method call is evaluated recursively for all of the subnodes of the tree, starting at the top node. The
method checks to see if the node is a leaf node or an internal node. If it is a leaf node, it is evaluated and
the resulting value is returned to the object that called it. If it is an internal node, it evaluates its subnodes
by calling Evaluate() �rst on the left node, then on the right node. Once these results are obtained, they are
combined using the mathematical algorithm coded for the node, and the resulting value is then returned to
the calling object.

Finally, the gradient component scripted in the third example:

GMAT dSdotdR = 1/S*(Svecdot' - Svec'*Svecdot*Svec'/S^2)*(- Sat1.PhiA)...
+ Svec'/S*(-Sat1.PhiC);

Draft: Work in Progress
242 CHAPTER 26. INLINE MATHEMATICS IN GMAT

Figure 26.4: Classes Used to Implement GMAT Mathematics

produces Figure 26.3. Evaluation for this tree proceeds as outlined above, with a few variations. Instead of
calling the Evaluate() method for the nodes in the tree, expressions that use matrices call the MatrixEvaluate
method. Another wrinkle introduced by the matrix nature of this example is that the internal nodes now
have an additional requirement; each node needs to determine that the dimensionality of the subnodes
is consistent with the requested operations. This consistency check is performed during initialization in
the Sandbox, using the ValidateInputs() method. MatrixEvaluate may perform additional checks during
execution, so that singularities in the computation can be �agged and brought to the attention of the user.

26.3 Core Classes
Figure 26.4 shows the class hierarchy implemented to perform the operations described above, along with
some of the core members of these classes. The core classes used in GMAT to perform mathematical
operations are shown in green in this �gure, while the helper classes used to setup the binary tree structure
are shown in orange. The MathTree and its nodes are all owned by instances of the Assignment command,
shown in yellow in the �gure. Core GMAT classes are shaded in blue. The main features of these classes are
shown here, and discussed in the following paragraphs. At the end of this section, the principal elements of
the base classes are collected for reference.

The MathTree class is the container for the tree describing the equation. It contains a pointer to the

Draft: Work in Progress
26.3. CORE CLASSES 243

topmost node of the tree, along with methods used to manipulate the tree during initialization and execution.
This class is used to provide the interface between the tree and the Assignment command.

Each node in a MathTree is derived from the MathNode class. That base class provides the structures
and methods required by the MathTree to perform its functions. There are two classes derived from the
MathNode base: MathElement and MathFunction. The MathElement class is used for leaf nodes, and can
store either a numerical value, a matrix, or a GMAT object that evaluates to a �oating point number �
for example, a Parameter, or a real member of a core GMAT object. MathFunction instances are used to
implement mathematical operators and functions. The left and right subnodes of these nodes contain the
function or operator operands. Subnodes are evaluated before the operator is evaluated, producing results
that are used when evaluating the function.

The MathNode base class contains two members that are used to check the compatibility of operands
during initialization. The EvaluateInputs() method checks the return dimensions of the subnodes of the node,
and returns true if either the node is a MathElement or if the subnodes are compatible with the current node's
Evaluate() and MatrixEvaluate() methods. The ReportOutputs() method is called on subnodes to obtain
the dimensions of matrices returned from calls to MatrixEvaluate(). That method provides an interface used
by the EvaluateInputs() method to perform its evaluation.

One additional item worth mentioning in the MathNode base class is the implementation of the Matrix-
Evaluate() method. The Evaluate() method is pure virtual, and therefore not implemented in the base class.
MatrixEvaluate(), on the other hand, is implemented to apply the Evaluate() method element by element
to the matrix members. In other words, the default MatrixEvaluate() method implements the algorithm

Mij = Op(Lij , Rij) (26.3)
where Mij is the [i,j] element of the resultant, Lij is the [i,j] element of the left operand, and Rij is the
[i,j] element of the right operand. Most classes derived from the MathFunction class will override this
implementation.

The classes implementing mathematical operations are derived from the MathFunction class. Figure 26.4
shows some (but not all) of these derived classes. Operators that have a one to one functional correspondence
with MATLAB operations are named identically to the MATLAB function. That means that operators like
the transpose operator will violate the GMAT naming conventions, at least for the string name assigned
to the class, because the MATLAB operator is lowercase, �transpose�, while the GMAT naming convention
speci�ed that class names start with an upper case letter.

Operations that can rely on the algorithm presented in equation 26.3 do not need to implement the
MatrixEvaluate() method; for the classes shown here, that means that Add, Subtract, sin, cos, and asin
only need to implement the Evaluate() method, while Multiply, Divide, transpose, norm and Invert need to
implement both the Evaluate() and MatrixEvaluate() methods.

26.3.1 MathTree and MathNode Class Hierarchy Summary
This section describes the top level classes in the MathTree subsystem, summarizing key features and pro-
viding additional information about the class members.

26.3.1.1 MathTree
A MathTree object is a container class used to help initialize and manage the tree representing an equation.
It standardizes the interface with the Assignment command and acts as the entry point for the evaluation
of an equation. It is also instrumental in setting the object pointers on the tree during initialization in the
Sandbox. Key members of this class are described below.

Class Attributes

• topNode: A pointer to the topmost node in the MathTree.

Draft: Work in Progress
244 CHAPTER 26. INLINE MATHEMATICS IN GMAT

Methods
• Evaluate(): Calls the Evaluate() method on the topNode and returns the value obtained from that

call.

• MatrixEvaluate(): Calls the MatrixEvaluate() method on the topNode and returns the matrix ob-
tained from that call.

• ReportOutputs(Integer &type, Integer &rowCount, Integer &colCount): Calls ReportOut-
puts(...) on the topNode and returns the data obtained in that call, so that the Assignment command
can validate that the returned data is compatible with the object that receives the calculated data (i.e.
the object on the left side of the equation).

• Initialize(std::map<std::string,GmatBase*> *objectMap): Initializes the data members in the
MathTree by walking through the tree and setting all of the object pointers in the MathElement nodes.

26.3.1.2 MathNode
MathNode is the base class for the nodes in a MathTree. Each MathNode supports methods used to
determine the return value from the node, either as a single Real number or as a matrix. The MathNodes
also provide methods used to test the validity of the calculation contained in the node and any subnodes
that may exist. The core MathNode members are listed below.

Class Attributes
• realValue: Used to store the most recent value calculated for the node.

• matrix: Used to store the most recent matrix data calculated for the node, when the node is used for
matrix calculations.

Methods
• Evaluate(): An abstract method that returns the value of the node. For MathElements, this method

returns the current value of the element, either by evaluating a Parameter and returning the value,
accessing and returning an object's internal data, or returning a constant. For MathFunctions, the
Evaluate() method appies the function and returns the result. If the encoded function cannot return
a Real number, Evaluate() throws an exception.

• MatrixEvaluate(): Fills in a matrix with the requested data. For MathFunction objects, this method
performs the calculation of the operation and �lls in the matrix with the results. The default imple-
mentation uses equation 26.3 to �ll in the matrix element by element. Operations that do not return
matrix values, like norm and determinant, throw exceptions when this method is called. MathElements
simply return the matrix associated with the node.

• EvaluateInputs(): Checks the inputs to the node to be sure that they are compatible with the
calculation that is being performed. For MathElement nodes, this method always returns true if the
node was successfully initialized. For MathFunction nodes, this method calls its subnodes and checks
to be sure that the subnodes return compatible data for the function.

• ReportOutputs(Integer &type, Integer &rowCount, Integer &colCount): This method tells
the calling object the type and size of the calculation that is going to be performed by setting values
of the parameters used in the call. The �rst parameter, `type', is set to indicate whether the return
value will be a matrix or a Real number. `rowCount' and `colCount' are set to the dimensions of the
matrix if the return value is a matrix, or to 0 if the return value is scalar. This method is used in the
EvaluateInputs() method to determine the suitability of subnodes for a given calculation, and by the
MathTree class to obtain the size of the answer returned from a complete calculation.

Draft: Work in Progress
26.3. CORE CLASSES 245

26.3.1.3 MathElements
The leaf nodes of a MathTree are all instances of the MathElement class. The MathElement class acts as a
wrapper for GMAT objects, using the methods de�ned in the GmatBase base class to set these referenced
objects up for the MathElement's use. The GmatBase methods SetRefObject(), SetRefObjectName(), Ge-
tRefObject(), and GetRefObjectName() are overridden to set the internal data structures in the node. The
other relevant members of this class are listed below.

Class Attributes

• refObjectName: Holds the name of the GMAT object that is accessed by this node.

• refObject: A pointer to the referenced object. This pointer is set when the MathTree is initialized in
the Sandbox.

Methods

• SetRealValue(Real value): Sets the value of the node when it contains a constant.

26.3.1.4 MathFunctions
The internal nodes of a MathTree are all instances of classes derived from MathFunction. This class contains
pointers to subnodes in the tree which are used to walk through the tree structure during initialization and
evaluation. The relevant members ate described below.

Class Attributes

• left: A pointer to the left subnode used in the calculation. MathFunctions that only require a right
subnode leave this pointer in its default, NULL setting.

• right: A pointer to the right subnode used in the calculation. MathFunctions that only require a left
subnode leave this pointer in its default, NULL setting.

Methods

• SetChildren(MathNode *leftChild, MathNode *rightChild): Sets the pointers for the left and
right child nodes. If a node is not going to be set, the corresponding parameter in the call is set to
NULL.

• GetLeft(): Returns the pointer to the left node.

• GetRight(): Returns the pointer to the right node.

• Evaluate(): In derived classes, this method is overridden to perform the mathematical operation
represented by this node.

• MatrixEvaluate(): In derived classes that do not use the default matrix calculations (equation 26.3),
this method is overridden to perform the mathematical operation represented by this node.

26.3.2 Helper Classes
There are two classes that help con�gure a MathTree: MathParser and MathFactory. In addition, the
Assignment command acts as the interface between a MathTree and other objects in GMAT, and the
Moderator provides the object interfaces used to con�gure the tree. This section sketches the actions taken
by these components.

Draft: Work in Progress
246 CHAPTER 26. INLINE MATHEMATICS IN GMAT

26.3.2.1 MathParser

The Interpreter subsystem (see Section 17.3) in GMAT includes an interface that can be used to obtain a
MathParser object. This object takes the right side of an equation, obtained from either the GMAT GUI
or the ScriptInterpreter, and breaks it into a tree that, when evaluated depth �rst, implements the equation
represented by the equation. The MathParser uses the methods described below to perform this task.

Methods

• Parse(const std::string &theEquation): Breaks apart the text representation of an equation and
uses the component pieces to construct the MathTree.

• CreateNode(const std::string &genString): Uses the generating string �genString�, to create a
node for insertion into the MathTree.

• Decompose(const std::string &composite): This method is the entry point to the recursive de-
scent algorithm. It uses internal methods to take a string representing the right side of the equation
and break it into the constituent nodes in the MathTree. The method returns the topmost node of the
MathTree, con�gured with all of the derived subnodes.

26.3.2.2 MathFactory

The MathFactory is a GMAT factory (see Chapter 6 that is used to construct MathNodes. It has one method
of interest here:

Methods

• CreateNode(const std::string &ofType): Creates a MathNode that implements the operation
contained in the string. If no such operator exists, the MathFactory creates a MathElement node and
sets the reference object name on that node to the test of the `ofType' string.

26.3.2.3 The Assignment Command and the Moderator

The Assignment command is the container for the MathTree described in this chapter. All GMAT equations
are formatted with a receiving object on the left side of an equals sign, then the equals sign, and then
the equation on the right. When the interpreter system is con�guring an Assignment command, it detects
when the right side is an equation, and passes the string describing the equation into a MathParser. That
MathParser proceeds to parse the equation, making calls into the Moderator when a new MathNode is re-
quired. The Moderator accesses the MathFactories through the FactoryManager, and obtains MathNodes as
required. These nodes are not added to the Con�guration Manager, but they are returned to the MathParser
for insertion into the current MathTree. Once the tree is fully populated, it is returned to the Assignment
command, completing the parsing of the expression.

When the Moderator is instructed to run a mission, it passes the con�gured objects into the Sandbox,
and then initializes the Sandbox. The last step in Sandbox initialization is to initialize all of the commands
in the mission sequence. When one of these commands is an Assignment command that includes a MathTree,
that command initializes the MathTree after initializing all of its other elements, and then validates that the
MathTree is compatible with the object on the left side of the equation. If an error is encountered at this
phase, the Assignment command throws an exception that describes the error and includes the text of the
command that failed initialization. If initialization succeeds, the Moderator then tells the Sandbox to run
the mission. The Sandbox starts at the �rst command in the mission sequence, and executes the command
stream as described in Chapter 23.

Draft: Work in Progress
26.4. BUILDING THE MATHTREE 247

Figure 26.5: Control Flow for Parsing an Equation

26.4 Building the MathTree
Scripted mathematics are constructed using the MathParser class, which builds the binary tree representing
the equation that is evaluated by constructing nodes for the tree and placing these nodes into the tree one
at a time. Figure 26.5 shows the high level control �ow used to create the MathTree. An empty MathTree
is created, and then that tree is passed into the MathParser along with the string representation of the
equation. The Mathparser takes the MathTree and populates it with MathNodes based on the equation
string. The top node of this completed tree is then returned from the parser, and set on the assignment
command for use during execution of the mission.

The middle step in the process outlined in Figure 26.5 encapsulates the recursive descent decomposition
of the equation. Figure 26.6 provides a more detailed view of this algorithm. The InterpretAction method of
the Assignment command determines that the right side of the assignment is an equation, and then creates
a MathTree and a MathParser to break this equation into the components needed for evaluation during
execution. The MathTree and the equation string are passed into the MathParser.

The MathParser takes the input string, and attempts to break it into three pieces: an operator, a left
element, and a right element. Any of these three pieces can be the empty string; if the operator string is
empty, only the left string contains data, denoting that the string is used to build a MathElement node, on
one of the leaves of the MathTree.

If the operator string is not empty, the operator string is used to build a MathFunction node. Math-
Function nodes are used to perform all mathematical operations: basic math like addition, subtraction,
multiplication, division, and exponentiation, along with unary negation and mathematical functions. The
arguments of the MathFunction are contained in the left and right strings. These strings are passed into the
MathParser's Parse method for further decomposition, and the process repeats until all of the strings have
been decomposed into operators and the MathElement leaf nodes. If either string is empty, the corresponding
child node on the MathFunction is set to NULL.

Once a leaf node has been constructed, that node is set as the left or right node on the operator above
it. Once the left and right nodes are set on a MathFunction, that node is returned as a completed node to
the calling method, terminating that branch of the recursion. When the topmost node has its child nodes
�lled in, the MathParser returns from the recursion with the completed MathTree.

26.5 Program Flow and Class Interactions
The preceding section describes the construction of the MathTree that represents an equation. The parsing
described above places the instances of the MathFunction nodes into the MathTree, along with the string
names of the MathElement nodes. The objects evaluated in the MathElement nodes are not placed into the
MathTree, because those elements depend on local objects in the GMAT Sandbox when a script is executed.
This section explains how those objects are placed into the MathTree in the Sandbox, and then evaluated
to complete a calculation for an Assignment command.

Draft: Work in Progress
248 CHAPTER 26. INLINE MATHEMATICS IN GMAT

Figure 26.6: Parser Recursion Sequence

Draft: Work in Progress
26.5. PROGRAM FLOW AND CLASS INTERACTIONS 249

Figure 26.7: MathTree Initialization in the Sandbox

26.5.1 Initialization
Figure 26.7 shows the process of initialization of the Command Sequence in the Sandbox, with a focus on the
MathTree initialization. Section 5.2.2.1 describes the general initialization process in the Sandbox. Sandbox
initialization proceeds as described there, initializing the objects and then the command sequence. When
the command in the sequence is an Assignment command containing in-line mathematics, the Assignment
command performs the details shown here to initialize the MathTree. The command �rst accesses the
top node of the MathTree. If that node has subnodes, those subnodes are initialized iteratively until a
MathElement node is encountered.

When a MathElement node is encountered, that node is queried for its referenced object's name. If the
node returns a name, that object's pointer is accessed in the local object map owned by the Sandbox and set
on the node using the SetRefObject() method. If the reference object name is empty, the node is a numerical
constant, and no further initialization is required.

When all of the subnodes of a MathFunction node have been initialized, that node validates that the
dimensionality of the operands are compatible with the mathematical operation represented by the node.
This validation is done by calling the ReportOutputs() method on the child nodes and ensuring that the
results are consistent with the requirements of the operation. If the results are consistent, local variables are

Draft: Work in Progress
250 CHAPTER 26. INLINE MATHEMATICS IN GMAT

Figure 26.8: Evaluation of a MathTree Assignment

used to save data so that parent nodes to the current node can obtain consistency data without recursing
through the MathTree. When the results are inconsistent with the operation, a warning message (which
indicates the inconsistency of the calculation and the text of the line that generate the MathTree) is posted
to the user, and an internal �ag is set to false, indicating that the calculation cannot be performed. That
�ag is returned when the EvaluateInputs() method is called on the node. This completes the initialization
of the MathFunction node, and control is returned to the node above the current node.

When the topmost node in the MathTree �nishes initialization, the MathTree calls the EvaluateInputs()
method for the top node. If that call returns a false value, an exception is thrown and initialization terminates
for the Assignment command. When the call to EvaluateInputs() succeeds, the MathTree reports successful
initialization to the Assignment command, which validates that the result of the calculation is consistent
with the object that will be receiving the result, and, if so, returns a �ag indicating that the calculation
initialized successfully. If the resultant of the MathTree calculation is determined to be inconsistent with
the receiving object, an exception is thrown that contains the text of the line that generated the Assignment
command, along with information about the error encountered.

26.5.2 Execution
The task of evaluating a calculation is shown in Figure 26.8. The Assignment command determines if a
MathTree calculation is being performed by determining if the right side of the assignment (denoted RHS
in the �gure) is a MathTree. If it is, the Assignment command checks to see if the result of the calculation

Draft: Work in Progress
26.5. PROGRAM FLOW AND CLASS INTERACTIONS 251

should be a scalar value or a matrix by calling ReportOutputs() on the MathTree. If the result of this call
indicates that the output is one row by one column, the output from the calculation is scalar; otherwise, it
is a matrix. The corresponding Evaluate() method is called on the MathTree.

The MathTree Evaluate() methods behave identically in control �ow; the di�erence between Evaluate()
and MatrixEvaluate() is in the return value of the call. Similarly, the MathNode Evaluate() and MatrixE-
valuate() methods follow identical control �ow, di�ering only in return types. When the correct Evaluate()
method is called on the MathTree, the MathTree calls the corresponding Evaluate() method on the topmost
MathNode in the tree. Evaluation is then performed recursively on the nodes of the tree, as described here.

When an Evaluate() method is called on a node, the evaluation process proceeds based on the type of
node that owns the method. If the node is a MathFunction node, then it calls the corresponding Evaluate()
method on each of its child nodes, evaluating the left node �rst, then the right node. If one of those nodes
is NULL that phase of the evaluation is skipped. This can occur when the mathematical operation only
requires one operand � for example, for most of the trigonometric functions, or for unitary matrix operations
like the transpose operation. When the child node evaluation is complete, the returned data from that
evaluation are used as the operands for the mathematical operation. The operation is performed, and the
resulting data are passed to the calling method.

MathElement nodes are evaluated directly when encountered, and can return either a real number or a
matrix of real numbers based on which method is called � either Evaluate() for a Real, or MatrixEvaluate()
for a matrix. The result of this evaluation is passed to the calling method. Since all of the leaf nodes on a
MathTree are MathElement nodes, these nodes terminate the iteration through the tree.

When the calculation iteration reaches the topmost node in the MathTree, the operation for that node
is performed and the resulting data are returned to the Assignment command. The Assignment command
then sets the data on the GMAT object designated on the left side of the statement, designated the LHS in
the �gure. This completes the evaluation of the Assignment command.

Draft: Work in Progress
252 CHAPTER 26. INLINE MATHEMATICS IN GMAT

Draft: Work in Progress

Chapter 27

GMAT and MATLAB Functions

Darrel J. Conway
Thinking Systems, Inc.

Scripts written for GMAT can become complicated as the needs of the mission evolve. Long missions can
involve sets of commands that use the identical or nearly identical instructions in di�erent portions of the
mission. Some missions may also need to use mathematical computations that are complicated enough to be
implemented more easily in MATLAB R©than in GMAT's inline mathematics. These two issues � repetitive
command subsequences and mathematics better implemented in MATLAB � are addressed by the function
classes implemented in GMAT.

Repeated command subsequences can be stored in a separate �le from the main Mission Control Sequence,
and executed through either a CallFunction command or inline in mathematical expressions (see Chapter 26).
The actual function code is encapsulated in an instance of the GmatFunction class. GmatFunctions provide
local resources created inside of the function, proxies used for objects and parameters passed into the function,
and access to objects identi�ed as available for use by all of the objects in the Sandbox, referred to as �global�
objects for the purposes of GMAT1.

MATLAB functions are also called using either a CallFunction command or through inline mathematics2.
The function code is contained in a MATLAB compatible m-�le. The �le identi�er and related data structures
needed for the function call are encapsulated in an instance of the MatlabFunction class. GMAT can pass
variables, arrays, and objects into MATLAB for use in these functions, and can receive Variables and Arrays
back as return parameters.

Scripting for the GmatFunction and MatlabFunction resources, and for the CallFunction and inline math
commands that use these resources, is identical in GMAT's scripting language. Listing 27.1 shows the syntax
used in the Mission Control Sequence for both types of functions. Section 27.2.1.2 shows a more complete
example of a GMAT function used in a script.

1 % Sample script for Functions in GMAT
2

3 Create Spacecraft DefaultSC;
4 Create Array outputArray [6 ,1];
5

6 %--
7 %---------- Functions

1Note that these objects are not truly global in scope. Access is restricted for most of these objects to the resources in the
Sandbox. Subscribers also provide some restricted access outside of the Sandbox through the Publisher. This slightly larger
scoping rule for Subscribers will be de�ned more completely when multiple Sandbox capabilities are added to GMAT.

2The inline math application of MATLAB functions is part of the design presented in this document. The current code has
not yet been updated to support this usage.

253

Draft: Work in Progress
254 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

8 %--
9 Create MatlabFunction MLFunction;

10 GMAT MLFunction.FunctionPath = ./ matlab /;
11

12 %--
13 %---------- Mission Sequence
14 %--
15

16 % First call a MATLAB function
17 [outputArray] = MLFunction(DefaultSC.A1ModJulian);
18

19 % Now a GMAT Function. GMAT Functions are not declared using
20 % a "Create" line; all undeclared functions are assumed to be
21 % GMAT functions.
22 [outputArray] = GMFunction(DefaultSC.A1ModJulian);
23

24 % Finally , here is an internal function. Internal functions
25 % resemble Parameters , but include argument lists so that
26 % data not generally available to a Parameter can be accessed
27 % for the encoded computations.
28 This example is TBD.

Listing 27.1: Function Usage in a GMAT Script

27.1 General Design Principles
Figure 27.1 shows the classes most directly used for the function implementation. Other classes in GMAT
also play a role in the function implementation, but these other classes act inside of functions in the same
way that they behave in the rest of the system. The classes shown in the �gure have behaviors driven by
the design of the Function subsystem.

Figure 27.1: Classes Used in the Function Implementations

Draft: Work in Progress
27.1. GENERAL DESIGN PRINCIPLES 255

This �gure brings out several high level features of GMAT's function design. GMAT uses a set of
classes derived from a Function base class to manage the function subsystem. This base class de�nes a
set of interfaces that are accessed using a class called the FunctionManager. That class, shown in lavender
in the �gure, is the interface used by the CallFunction command to execute a function. It is also used
when evaluating inline mathematics, through a specialized MathFunction called a FunctionRunner designed
speci�cally to evaluate members of the Function subsystem. Since all MathFunctions are MathNodes, the
FunctionRunner is a MathNode in a MathTree.

GMAT includes three commands, and enhancements to a fourth, that were added to the system speci�-
cally to support functions. The CallFunction command is used to execute a function on a single line; it is the
entry point to function calls in GMAT's Control Sequences. Functions can be called on a single script line or
GUI node using this command. Sometimes a function will need some local resources that are not used any-
where else in the mission. These resources can be constructed using the Create command. Objects built with
this command only exist during a mission run � they are never registered in GMAT's con�guration. Some
resources need to be shared between di�erent portions of the GMAT control sequences. These resources are
identi�ed using the third function speci�c command, the Global command. The Global command is used to
manage resources between di�erent Control Sequences in a Sandbox. This command lets a user set the scope
for local resources so that they can be accessed in a separate Mission Control or Function Control Sequence.

The Assignment command can be used to perform mathematical calculations inline, as described in
Chapter 26. These calculations are performed using a recursive descent algorithm, breaking the inline
mathematics into separate nodes of a tree structure called a MathTree. Functions can be included in the
MathTree through a node in the tree that instantiates a FunctionRunner object. The FunctionRunner class
is a specialized node in the MathTree, derived from the MathFunction base class, that executes a function
and retrieves the resulting data. It is designed to work with functions that return a single resultant � either a
Real number or an Rmatrix. It throws an exception for any other function that a user attempts to use inside
of inline mathematics. The Assignment command is enhanced to allow the identi�cation and execution of
functions as part of the inline mathematics capabilities, by making calls to FunctionRunner nodes.

Figure 27.2: Class diagram for the Function Classes

Figure 27.2 shows some of the details of the classes used to connect the function subsystem into the rest

Draft: Work in Progress
256 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

of GMAT. The two classes shown in detail here � Function and FunctionManager � de�ne the interfaces
used for function calls through either a CallFunction command or a FunctionRunner MathFunction. These
classes are described in the following paragraphs.

27.1.1 The Function class
The base class for the MATLAB, GMAT, and internal functions is the Function class. This class de�nes the
interfaces used by the function manager to execute the function. The class includes the following attributes
and methods:

Function Class Attributes The class attributes provide storage for the input and output parameters,
and the path to the function �le if applicable.

• std::string functionPath: Identi�es the location of the function �le for MATLAB or GMAT func-
tions.

• std::map<std::string, GmatBase*> inputs: A mapping between input names and wrappers for
the associated objects used in the function. (For a discussion of GMAT's wrapper classes, see Sec-
tion 23.4.3.)

• std::map<std::string, GmatBase*> outputs: A mapping between output names and wrappers
for the associated objects used to return data from the function.

Function Class Methods The FunctionManager uses a standard set of methods, de�ned here, to interface
with the function classes. These methods enable the setup and execution of the functions, and provide access
to the results if needed for inline mathematics.

• bool Initialize(): Initializes the function.
• bool Execute(): Runs the function.
• Real Evaluate(): For functions that return a single Real value, this method retrieves that value. The

method throws an exception for all other functions.

• Rmatrix MatrixEvaluate(): For functions that return a single Rmatrix value, this method retrieves
that Rmatrix. The method throws an exception for all other functions.

These methods are overridden as needed for the derived Function classes. In addition to the methods listed
here, the Function base class provides access methods used to set the object stores and other object references
needed to run the function.

27.1.2 The FunctionManager
The CallFunction and inline math routines in GMAT use a common interface, the FunctionManager, to use
GMAT's function subsystem. The FunctionManager is used to complete initialization of the function, run
it, and when needed return the results of that run. This functionality is provided through the following
attributes and methods:

FunctionManager Attributes The function manager passes the Function Object Store and Global Ob-
ject Store to the function if needed. These stores are set during initialization on the FunctionManager, using
the following attributes:

• std::map<std::string, GmatBase*> functionStore: The Function Object Store.
• std::map<std::string, GmatBase*> *globalStore: The Global Object Store, set from the Sand-

box.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 257

FunctionManager Methods The interfaces accessed by the CallFunction and FunctionRunner classes
are implemented using the following methods:

• bool Execute(): Initializes and runs the function.

• Real Evaluate(): For functions that return a single Real value, this method retrieves that value. The
method throws an exception for all other functions.

• Rmatrix MatrixEvaluate(): For functions that return a single Rmatrix value, this method retrieves
that Rmatrix. The method throws an exception for all other functions.

27.2 GMAT Functions
The preceding sections of this chapter describe features of GMAT's function model that apply to all of the
function classes in GMAT. In this section, I'll describe the speci�c features of GMAT functions. MATLAB
Functions are described in Section 27.3, and internal functions in Section 27.4.

27.2.1 GMAT Function Design Principles
GMAT functions are small sections of script that are initialized and used as part of the Mission Control
Sequence. Each function is contained in a separate �le that de�nes the input and output parameters used in
the function, the name of the function, and the sequence of steps executed when running the function. The
function �le name is the name of the contained function, modi�ed to add the extension �.gmf� to complete
the �le name.

Objects and other variables used inside of GMAT functions are limited in scope to the function itself,
except when the user explicitly modi�es the scope of the underlying object by declaring it �Global.� Objects
created outside of the function can be accessed in the function if they are used as parameters in the function
call or if they are set as global objects. Propagators, GmatFunctions, and Coordinate Systems are automat-
ically de�ned as global objects, so all objects of these types can be used in the Mission Control Sequence
and in all included GMAT Functions.

GMAT �nds GMAT function �les by searching in the folders identi�ed by the GmatFunctionPath. That
path is initialized in the startup �le, and can be modi�ed from the graphical user interface or from a script
�le to meet speci�c mission needs. The system searches in the most recently added folders �rst, proceeding
through the folders identi�ed by the function path until the speci�ed function has been located.

27.2.1.1 Anatomy of a Function File
GMAT functions provide users with the ability to break out sections of a mission � usually portions of the
Mission Control Sequence, though functions can be used to build objects used elsewhere as well � into smaller
chunks, and thus unclutter the main Mission Control Sequence. GMAT functions are de�ned in separate
�les. The function �le has the same, case-sensitive, name as the function. Function �les follow the same
basic syntax as GMAT script �les. The �rst uncommented line of each GMAT function de�nes the function
using a function declaration in the form

function [resultants] = MyFunction(inputs)

The �le name is identical to the function name, and has the extension �.gmf�; thus for this example, the �le
containing the function would be named �MyFunction.gmf� and would be located in a folder on GMAT's
GmatFunction path.

The remainder of the function �le de�nes the Function Control Sequence (FCS). The FCS de�nes local
and global resources used in the function, and speci�es the ordered sequence of actions executed when the
function is called.

Draft: Work in Progress
258 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

A typical script showing GMAT function calls is shown in Listing 27.2. This script calls a function named
SatSep on lines 28 and 36. That function is used to calculate the physical separation between two spacecraft
as they are propagated.

1 % This script shows how to call a GMAT function
2 % named SatSep
3

4 Create Spacecraft Sat1 Sat2;
5 Sat1.RAAN = 45;
6 Sat1.TA = 0.5;
7 Sat2.RAAN = 44.5;
8 Sat2.TA = 0.0;
9

10 Create ForceModel fm;
11 fm.PrimaryBodies = {Earth};
12

13 Create Propagator prop;
14 prop.FM = fm;
15

16 Create ReportFile sepData
17 sepData.Filename = Sat1_Sat2_Sep.txt;
18

19 Create ImpulsiveBurn mnvr;
20 mnvr.Axes = VNB;
21 mnvr.Element2 = 0.05;
22

23 Create Variable dx dy dz dr;
24 Global dx dy dz;
25

26 While Sat1.ElapsedDays < 0.1
27 Propagate prop(Sat1 , Sat2);
28 [dr] = SatSep(Sat1 , Sat2); % 1st function call
29 Report sepData Sat1.A1ModJulian dx dy dz dr;
30 EndWhile;
31

32 Maneuver mnvr(Sat1);
33

34 While Sat1.ElapsedDays < 0.2
35 Propagate prop(Sat1 , Sat2);
36 [dr] = SatSep(Sat1 , Sat2); % 2nd function call
37 Report sepData Sat1.A1ModJulian dx dy dz dr;
38 EndWhile;

Listing 27.2: A script that uses a Function

The function calls shown here are made using a CallFunction command. When a function is called with
a CallFunction, the line of script making the call is responsible for running the function, and copying the
output data returned from the function into the output parameters listed in the script line � for these cases,
that means setting the value of dr to the value returned from the function.

Another interesting feature of this script is seen on line 24. That line,

Global dx dy dz;

Draft: Work in Progress
27.2. GMAT FUNCTIONS 259

identi�es three variables created earlier in the script as variables that can be accessed anywhere in the run.
These variables are used in the SatSep function, shown in Listing 27.3.

1 % Function that calculated the separation
2 % between two spacecraft
3 function [delta] = SatSep(Sat1 , Sat2);
4

5 Global dz dy dx;
6 Create Variable delta;
7 Create Array dr[3,1];
8

9 dx = Sat2.X - Sat1.X;
10 dy = Sat2.X - Sat1.X;
11 dz = Sat2.X - Sat1.X;
12

13 dr(1,1) = dx;
14 dr(2,1) = dy;
15 dr(3,1) = dz;
16

17 delta = sqrt(dot(dr , dr));

Listing 27.3: A Function that computes Satellite Separations

The �rst executable line in this function �le identi�es the contained function, and speci�es its return
(output) data, the function name, and the function inputs:

function [delta] = SatSep(Sat1, Sat2);

Note that the argument names used in the de�nition of the function, and later in the Function Control
Sequence, do not necessarily match the names used in the function call made in the main script. For
example, the output variable in this function is named �delta,� but the function call uses the name �dr� in
the script that calls this function.

Line 5 in the function identi�es the global variables that are expected to execute the function. This line,

Global dz dy dx;

matches the list globals de�ned in the calling script. As can be seen here, the order of these global variables is
not important. The critical feature is that each variable identi�ed as a global needs to be de�ned somewhere
prior to its use in the script or function.

This function builds two local objects that are used to execute the function. These local objects are
constructed through calls to the Create command on lines 6 and 7:

Create Variable delta;
Create Array dr(3,1);

The objects created this way are limited in scope to this function unless they are later identi�ed as global
objects in the function.

The global objects identi�ed on line 5 are used on lines 9�11. These objects can be used just as if they
had been created locally, as is shown here. Similarly, the local array, �dr,� is used on lines 13 through 15 to
�ll the array with data for a function call made from inside of this function.

Line 17 makes a call to another function from inside of the SatSep function. That call,

delta = sqrt(dot(dr, dr));

Draft: Work in Progress
260 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

is calling a function named dot, shown later in this chapter (see Listing 27.6). This script line shows the
use of a GMAT function inside of inline mathematics. The function called this way is executed using a
FunctionRunner MathNode object. Functions that are called this way must return exactly one value, either
a Real number or an Rmatrix. This feature of the GMAT's function subsystem makes the use of user de�ned
and internal functions natural for users of the system, because GMAT functions that return a single value
can be used inline in the control sequences. Users do not need to call the functions separately before using
the results in equations written in GMAT's scripting language.

This concludes the basic sample of a GMAT function. A more complete discussion and example of GMAT
functions, along with a discussion of how the components of the function subsystem interact, can be found
in Section 27.2.1.2. Before we can tackle that description, we'll examine the components that work together
to build this functionality.

27.2.1.2 An End-to-end Example
The GMAT releases at SourceForge include a script �le named �ExCart2KepMathTest.script� that demon-
strates inline mathematics in GMAT's scripting language. The script includes a number of dot and cross
product calculations, along with computations of vector magnitudes and manipulations of vector compo-
nents. This section contains a script and several function �les built based on that sample mission, where the
inline vector mathematics have been replaced by function calls.

There are four GMAT function calls that will be used in this section. These functions are described and
listed here:

• LoadCartState A utility function that retrieves the Cartesian state from a Spacecraft and returns the
position and velocity vectors along with their magnitudes.

1 function [rv , vv , r, v] = LoadCartState(Sat);
2 % This function fills some arrays and variables with
3 % Cartesian state data
4 Create Variable r v
5 Create Array rv[3,1] vv[3,1]
6

7 rv(1,1) = Sat.X;
8 rv(1,2) = Sat.Y;
9 rv(1,3) = Sat.Z;

10 vv(1,1) = Sat.VX;
11 vv(1,2) = Sat.VY;
12 vv(1,3) = Sat.VZ;
13

14 [r] = magnitude(rv);
15

16 [v] = magnitude(vv);

Listing 27.4: The LoadCartState Function

• magnitude A function used to �nd the magnitude of a three-vector, stored in a 3 by one GMAT array.

1 function [val] = magnitude(vec1)
2

3 % This function takes a 3-vector in a GMAT array and
4 % calculates its magnitude
5 Create Variable val
6 val = sqrt(dot(vec1 , vec1));

Draft: Work in Progress
27.2. GMAT FUNCTIONS 261

Listing 27.5: The magnitude Function

• dot A function used to �nd the dot product of two three-vectors.
1 function [val] = dot(vec1 , vec2)
2

3 % This function takes two 3-vectors in a GMAT array and
4 % constructs their dot product
5 Create Variable val
6 val = vec1 (1,1) * vec2 (1,1) + vec1 (2,1) * vec2 (2,1) +...
7 vec1 (3,1) * vec2 (3,1);

Listing 27.6: The dot Function

• cross A function used to �nd the cross product of two three-vectors.
1 function [vec3] = cross(vec1 , vec2)
2

3 % This function takes two 3-vectors in a GMAT array and
4 % constructs their cross product
5 Create Array vec3 [3,1]
6

7 vec3 (1,1) = vec1 (2,1) * vec2 (3,1) - vec1 (3,1) * vec2 (2 ,1);
8 vec3 (2,1) = vec1 (3,1) * vec2 (1,1) - vec1 (1,1) * vec2 (3 ,1);
9 vec3 (3,1) = vec1 (1,1) * vec2 (2,1) - vec1 (2,1) * vec2 (1 ,1);

Listing 27.7: The cross Function

These function �les are pretty simple, but contain several interesting features worth mentioning before we
see how they are used in the sample script. The �rst line in each of these �les follows the pattern described
previously; they declare that the �le contains a function, specify the output argument list, and then the
function name and input argument list.

The LoadCartState function in listing 27.4 shows a function call inside of the de�ned function (see lines 14
and 16). This function uses the magnitude function to �nd the lengths of the position and velocity vectors.
Each of these nested function calls follows the usual CallFunction syntax, specifying the output parameter
in square brackets on the left side of the equation, with the function call on the right including its input
argument list in parentheses.

The magnitude function, listing 27.5, shows an alternative for functions that return exactly one parameter
on line 6. Functions with that form can be used inline with other mathematics � in this case, the interesting
line is

val = sqrt(dot(vec1, vec1));

The function is calling a second GMAT function, dot() � de�ned in listing 27.6 � to build the dot product of
the input vector with itself. The returned value is a Variable, and is used directly in the equation, making
a call through a FunctionRunner MathNode in the MathTree de�ned by this line of script.

The nesting alluded to earlier allows further nesting with this design. This feature is seen in these same
functions: the LoadCartState function calls the magnitude function, which in turn calls the dot function.
GMAT functions can be nested as deeply as needed by mission analysts.

These four functions are used in a script that is used to compare GMAT's internally calculated Keplerian
element Parameters with calculations performed inline. This script, shown in listing 27.8, performs the
element computations and reports GMAT's internal calculation, the inline calculation, and their di�erence
to a �le for review by the analyst.

Draft: Work in Progress
262 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

1 % Create a s/c
2 Create Spacecraft Sat;
3

4 Create ForceModel Propagator1_ForceModel;
5 GMAT Propagator1_ForceModel.PrimaryBodies = {Earth};
6

7 Create Propagator Prop;
8 GMAT Prop.FM = Propagator1_ForceModel;
9

10 % Variables and arrays needed in calculations
11 Create Variable SMA ECC RAAN;
12 Create Variable r v pi2 mu d2r Energy;
13 Create Variable SMAError ECCError RAANError;
14 Create Array rv[3,1] vv[3,1] ev[3,1] nv[3,1];
15

16 % Create a report to output error data
17 Create ReportFile Cart2KepConvert;
18 GMAT Cart2KepConvert.Filename = FunctDiffs.report;
19 GMAT Cart2KepConvert.ZeroFill = On;
20

21 mu = 398600.4415;
22 pi2 = 6.283185307179586232;
23 d2r = 0.01745329251994329509
24

25 While Sat.ElapsedDays < 1
26

27 Propagate Prop(Sat)
28

29 % Put the state data into some data structures
30 [rv, vv, r, v] = LoadCartState(Sat);
31

32 % Calculate the Energy and SMA
33 Energy = v^2/2 - mu/r;
34 SMA = -mu/2/ Energy;
35

36 % Eccentricity built from the eccentricity vector
37 ev = cross(vv , cross(rv, vv)) / mu - rv / r;
38 [ECC] = magnitude(ev);
39

40 % Next the ascending node , using the node vector
41 nv(1,1) = x*vz-z*vx;
42 nv(2,1) = y*vz-z*vy;
43 nv(3,1) = 0;
44 [n] = magnitude(nv);
45 RAAN = acos(nv(1 ,1)/n);
46 If nv(2,1) < 0;
47 RAAN = (pi2 - RAAN) / d2r;
48 EndIf;
49

50 SMAError = Sat.SMA - SMA;

Draft: Work in Progress
27.2. GMAT FUNCTIONS 263

51 ECCError = Sat.ECC - ECC;
52 RAANError = Sat.RAAN - RAAN;
53

54 Report Cart2KepConvert Sat.SMA SMA SMAError ...
55 Sat.ECC ECC ECCError Sat.RAAN RAAN RAANError;
56 EndWhile

Listing 27.8: A Script that Uses GMAT Functions

The example functions and script shown here will be used in the following discussions to help clarify how
the components of the Function subsystem design interact to build and run the functions.

27.2.2 Steps Followed for the Sample Script
In this section we will look at the script (shown in Listing 27.8) along with the four functions used by
this script (listings 27.4 through 27.7), and examine the behavior of the Mission Control Sequence, Function
Control Sequences, Con�guration, Sandbox, Sandbox Object Map, Global Object Store, and Function Object
Stores as the script is loaded, executed, and removed from memory. This discussion will be broken into four
distinct processes:

1. Script Parsing � the process of reading the script in Listing 27.8 and building the resources and Mission
Control Sequence.

2. Initialization � The process of passing the con�guration and MCS into the Sandbox.

3. Execution � The process of running the MCS, including calls to the functions.

4. Finalization � Steps taken when the run is complete.

As we will see, each of these steps can be further subdivided to a discrete set of substeps. We'll begin by
examining what happens when the script is �rst read into memory.

27.2.2.1 Script Parsing
The details of script parsing are described fully in Chapter 16, (�Script Reading and Writing�). That chapter
discusses the modes that the interpreter goes through when reading a script �le, starting with the object
property mode, moving through the command mode, and �nishing with the �nal pass through the mission
resources. You should review the relevant sections of that chapter if this terminology confuses you.

Table 27.1 shows the state of the components of the engine at the start of script reading. This table
does not include any elements speci�c to the Sandbox, because the Sandbox is in an idle state at this point.
When the Sandbox elements become relevant, they will be added to the tables summarizing the state of the
system.

Table 27.1: Status at Start of Script Parsing

Con�guration MCS Interpreter Mode Sandbox
Empty Empty Object Property Idle

The Script Interpreter remains in Object Property mode until the �rst command is encountered in the
script. That means that the following lines are all parsed in Object Property mode:

% Create a s/c
Create Spacecraft Sat;
Create ForceModel Prop_FModel;

Draft: Work in Progress
264 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

GMAT Prop_FModel.PrimaryBodies = {Earth};
Create Propagator Prop;
GMAT Prop.FM = Prop_FModel;

% Variables and arrays needed in calculations
Create Variable SMA ECC RAAN;
Create Variable r v pi2 mu d2r Energy;
Create Variable SMAError ECCError RAANError;
Create Array rv[3,1] vv[3,1] ev[3,1] nv[3,1];

% Create a report to output error data
Create ReportFile Cart2KepConvert;
GMAT Cart2KepConvert.Filename = FunctDiffs.report;
GMAT Cart2KepConvert.ZeroFill = On;

mu = 398600.4415;
pi2 = 6.283185307179586232;
d2r = 0.01745329251994329509

After these lines have been parsed, the table of objects looks like this:

Table 27.2: Status after Parsing the Objects

Con�guration MCS Interpreter Mode SandboxType Name
Spacecraft Sat Empty Object Property Idle
ForceModel Prop_FModel
Propagator Prop
Variable SMA
Variable ECC
Variable RAAN
Variable r
Variable v
Variable pi2
Variable mu
Variable d2r
Variable Energy
Variable SMAError
Variable ECCError
Variable RAANError
Array rv
Array vv
Array ev
Array nv
ReportFile Cart2KepConvert

At this point, the con�guration is complete. The objects contained in the con�guration all have valid data
values; those that are not set explicitly in the script are given default values, while those that are explicitly
set contain the speci�ed values.

Note that at this point, the con�guration does not contain any functions. GMAT functions are added
to the con�guration when they are encountered, as we'll see when we encounter a script line that includes a
GMAT function. The next line of the script contains a command:

Draft: Work in Progress
27.2. GMAT FUNCTIONS 265

While Sat.ElapsedDays < 1

When the Script Interpreter encounters this line, it toggles into command mode. Once this line of script has
been parsed, the state of the engine looks like this (note that I'm abbreviating the con�guration here � it
still contains all of the objects listed above):

Table 27.3: Status after Parsing the First Command

Con�guration MCS Interpreter Mode SandboxType Name
Spacecraft Sat While Command Idle
ForceModel Prop_FModel
Propagator Prop
Variable SMA
... ...
Array nv
ReportFile Cart2KepConvert

The Script Interpreter parses the next line (a Propagate line) as expected, giving this state:

Table 27.4: Status after Parsing the Propagate Command

Con�guration MCS Interpreter Mode SandboxType Name
Spacecraft Sat While Command Idle
ForceModel Prop_FModel +� Propagate
Propagator Prop
Variable SMA
... ...
Array nv
ReportFile Cart2KepConvert

The next script line is a function call:

[rv, vv, r, v] = LoadCartState(Sat);

When the Script Interpreter encounters this function call, several things happen:

1. The line is decomposed into three sets of elements: outputs (rv, vv, r, and v), the function name
(LoadCartState), and inputs (Sat)

2. The Script Interpreter builds a CallFunction command3.

3. The Script Interpreter sends a request to the Moderator for a function named LoadCartState. The
Moderator sends the request to the Con�guration Manager. Since the con�guration does not contain
a function with this name, the Con�guration Manager returns a NULL pointer, which is returned to
the ScriptInterpreter.

4. The Script Interpreter sees the NULL pointer, and calls the Moderator to construct a GmatFunction
object named LoadCartState. The Moderator calls the Factory Manager requesting this object. It is
constructed in a function factory, and returned through the Moderator to the Script Interpreter. The
Moderator also adds the function to the Con�guration.

3Note that each CallFunction � and, as we'll see later, FunctionRunner � that is created includes an instance of the Func-
tionManager class. This internal object is used to make all of the calls needed on the Function consistent between the two
avenues used to invoke a Function. All of the Function calls needed by the command or MathTree evaluation are made through
these FunctionManager instances.

Draft: Work in Progress
266 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

5. The Script Interpreter passes the GmatFunction into the CallFunction command.

6. The CallFunction command sends the GmatFunction to its FunctionManager instance.

7. The Script Interpreter passes the list of input and output parameters to the CallFunction.

8. The CallFunction passes the list of input and output parameters to its FunctionManager.

This completes the parsing step for the CallFunction line. Note that (1) the Function Control Sequence is
not yet built, and (2) the function �le has not yet been located in the �le system. These steps are performed
later. At this point, the system has this state:

Table 27.5: Status after Parsing the CallFunction Command

Con�guration MCS Interpreter Mode SandboxType Name
Spacecraft Sat While Command Idle
ForceModel Prop_FModel +� Propagate
Propagator Prop +� CallFunction
Variable SMA
... ...
Array nv
ReportFile Cart2KepConvert
GmatFunction LoadCartState

Now that we've encountered the �rst function in the script, it is useful to start watching the data structures
for the function. We'll do this in a separate table:

Table 27.6: Function Properties after Parsing the First CallFunction

Function Caller5 Function Manager Function Attributes
inputs,
outputs

Function
Object
Store

Global
Object
Store

inputs outputs FCS

LoadCartState CallFunction Names set Empty NULL Empty Empty Empty

One feature that it is worth noting at this point is that there are two locations used for input and output
arguments. The list managed in the FunctionManager tracks the parameters as listed in the function call
in the control sequence that is calling the function. These parameters are listed in the order found in the
call. Thus for this CallFunction, the StringArrays containing the arguments in the FunctionManager contain
these data:

inputNames = {"Sat"}
outputNames = {"v", "vv", "r", "v"}

The inputs and outputs maps in the Function object map the names used in the function to the associated
objects. Since the function itself has not been built at this stage, these maps are empty, and will remain
empty until the function �le is parsed.

The Function Object Store itself is empty at this point. It provides a mapping between the function
scope object names and the objects. Since the function has not yet been parsed, this object store remains
empty.

The next two script lines do not make function calls, so they can be parsed and built using the features
described in Chapter16. After these two lines are built:

5�Caller� in this context is the type of object � a CallFunction or a FunctionRunner � that is used to execute the function
in this example. It is possible that a function could be called from both types of object in the same script.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 267

Energy = v\^{}2/2 - mu/r;
SMA = -mu/2/Energy;

the state tables contain these data:

Table 27.7: Status after Parsing the next two Commands

Con�guration MCS Interpreter Mode SandboxType Name
Spacecraft Sat While Command Idle
ForceModel Prop_FModel +� Propagate
Propagator Prop +� CallFunction
Variable SMA +� Assignment
... ... +� Assignment
Array nv
ReportFile Cart2KepConvert
GmatFunction LoadCartState

and

Table 27.8: Function Properties after Parsing the First Two Assignment Lines

Function Caller Function Manager Function Attributes
inputs,
outputs

Function
Object
Store

Global
Object
Store

inputs outputs FCS

LoadCartState CallFunction Names set Empty NULL Empty Empty Empty

Both of the lines listed here generate Assignment commands. The right side of these assignments are
MathTree elements, built using the inline math features described in Chapter 26. As you might expect, the
Mission Control Sequence contains these new commands, but nothing else has changed at this level.

The next line also generates an Assignment line:

ev = cross(vv, cross(rv, vv)) / mu - rv / r;

This line also builds a MathTree for the right side of the equation. The resulting tree contains two function
calls, both made to the GMAT function named �cross.� The MathTree built from this Assignment line is
shown in Figure 27.3.
Once this command has been built, the state of the system can be tabulated as in Tables 27.9 and 27.10.

Table 27.9: Status after Parsing the Assignment Line containing Two Calls to the cross Function

Con�guration MCS Interpreter Mode SandboxType Name
Spacecraft Sat While Command Idle
ForceModel Prop_FModel +� Propagate
Propagator Prop +� CallFunction
Variable SMA +� Assignment
... ... +� Assignment
Array nv +� Assignment
ReportFile Cart2KepConvert

Continued on next page

Draft: Work in Progress
268 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Figure 27.3: A MathTree with Two Function Calls.

Continued from previous page
Con�guration MCS Interpreter Mode SandboxType Name

GmatFunction LoadCartState
GmatFunction cross

and

Table 27.10: Function Properties after Parsing the cross Assignment Line

Function Caller Function Manager Function Attributes
inputs,
outputs

Function
Object
Store

Global
Object
Store

inputs outputs FCS

LoadCartState CallFunction Names set Empty NULL Empty Empty Empty
cross FunctionRunner Names set Empty NULL Empty Empty Empty

There are two FunctionRunner nodes in the MathTree shown in Figure 27.3. Each one has its own Func-
tionManager. The inputs and outputs StringArrays have the following values for these FunctionManagers:

• Inner FunctionRunner MathNode

inputNames = {"rv", "vv"}
outputNames = {""}

• Outer FunctionRunner MathNode

inputNames = {"vv", ""}
outputNames = {""}

Note that at this point in the process, the unnamed arguments are marked using empty strings in the
StringArrays. This is a general feature of the argument arrays generated in a FunctionManager associated
with a FunctionRunner: empty strings are used to indicate arguments that must exist, but that do not have

Draft: Work in Progress
27.2. GMAT FUNCTIONS 269

names that can be looked up in the object stores. In general, these empty strings indicate either output data
or results that come from lower calculations performed in the MathTree.

The next script line,

[ECC] = magnitude(ev);

builds another function call using a CallFunction, this time to the magnitude function. The resulting
attributes are shown in Tables 27.11 and 27.12.

Table 27.11: Status after Parsing the Call to the magnitude Function

Con�guration MCS Interpreter Mode SandboxType Name
Spacecraft Sat While Command Idle
ForceModel Prop_FModel +� Propagate
Propagator Prop +� CallFunction
Variable SMA +� Assignment
... ... +� Assignment
Array nv +� Assignment
ReportFile Cart2KepConvert +� CallFunction
GmatFunction LoadCartState
GmatFunction cross
GmatFunction magnitude

and

Table 27.12: Function Properties after Parsing the magnitude Line

Function Caller Function Manager Function Attributes
inputs,
outputs

Function
Object
Store

Global
Object
Store

inputs outputs FCS

LoadCartState CallFunction Names set Empty NULL Empty Empty Empty
cross FunctionRunner Names set Empty NULL Empty Empty Empty
magnitude CallFunction Names set Empty NULL Empty Empty Empty

This process continues through the remaining lines of the script:

nv(1,1) = x*vz-z*vx;
nv(2,1) = y*vz-z*vy;
nv(3,1) = 0;
[n] = magnitude(nv);
RAAN = acos(nv(1,1)/n);
If nv(2,1) < 0;

RAAN = (pi2 - RAAN) / d2r;
EndIf;

SMAError = Sat.SMA - SMA;
ECCError = Sat.ECC - ECC;
RAANError = Sat.RAAN - RAAN;

Report Cart2KepConvert Sat.SMA SMA SMAError ...
Sat.ECC ECC ECCError Sat.RAAN RAAN RAANError;

EndWhile

Draft: Work in Progress
270 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

The only line that calls a GMAT function here is the fourth line, a CallFunction command that again calls
the magnitude function. At the end of parsing, our tables of object properties look like this:

Table 27.13: Status after Parsing the Script

Con�guration MCS Interpreter Mode SandboxType Name
Spacecraft Sat While Command Idle
ForceModel Prop_FModel +� Propagate
Propagator Prop +� CallFunction
Variable SMA +� Assignment
Variable ECC +� Assignment
Variable RAAN +� Assignment
Variable r +� CallFunction
Variable v +� Assignment
Variable pi2 +� Assignment
Variable mu +� Assignment
Variable d2r +� CallFunction
Variable Energy +� Assignment
Variable SMAError +� If
Variable ECCError +�+� Assignment
Variable RAANError +� EndIf
Array rv +� Assignment
Array vv +� Assignment
Array ev +� Assignment
Array nv +� Report
ReportFile Cart2KepConvert EndWhile
GmatFunction LoadCartState
GmatFunction cross
GmatFunction magnitude

and

Table 27.14: Function Properties after Parsing the Script

Function Caller Function Manager Function Attributes
inputs,
outputs

Function
Object
Store

Global
Object
Store

inputs outputs FCS

LoadCartState CallFunction Names set Empty NULL Empty Empty Empty
cross FunctionRunner Names set Empty NULL Empty Empty Empty
magnitude CallFunction Names set Empty NULL Empty Empty Empty

At this point in the process, the Con�guration and Mission Control Sequence have been populated, and
three GMAT functions have been identi�ed but not yet located. The ScriptInterpreter has �nished parsing
the script, but has not yet made its �nal pass through the objects created during parsing.

During the �nal pass, object pointers and references are set and validated. the ScriptInterpreter uses
the �nal pass to locate the function �les for all of the GmatFunction objects built during parsing. The
path to each function is set at this time. The ScriptInterpreter makes a call, through the Moderator, and
locates the function �le on the GmatFunctionPath. The �le must be named identically to the name of
the function, with a �le extension of �.gmf� � so, for example, the function �le for the magnitude function
must be named �magnitude.gmf�. These �le names are case sensitive; a �le named �Magnitude.gmf� will not

Draft: Work in Progress
27.2. GMAT FUNCTIONS 271

Figure 27.4: Initializing a Control Sequence

match the �magnitude� function. If there is no matching �le for the function, the ScriptInterpreter throws
an exception.

Once this �nal pass is complete, script parsing has �nished, and the ScriptInterpreter returns to an
idle state. The steps followed to parse the Mission Control Sequence, described above, give GMAT enough
information to fully populate the GUI so that it can present users with a view of the mission contained in
the script. The GUI includes entries for each of the functions in the main script, and displays these functions
along with all of the other con�gured objects on the Resource tree.

27.2.2.2 Initialization in the Sandbox
At this point, GMAT knows about the functions described in the Mission Control Sequence, but has not yet
constructed any of these functions. That step is performed when the mission is passed into the Sandbox and
initialized. The basic initialization process is described in Chapters 3 and 5. The process followed can be
described in four stages:

1. Population: The objects in GMAT's con�guration are cloned into the Sandbox Object Map, and the
Mission Control Sequence is set.

2. Object Initialization: The objects in the Sandbox Object Map are initialized.

3. Global Object Management: Objects that have their isGlobal �ag set are moved into the Global
Object Store.

Draft: Work in Progress
272 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

4. Command Initialization: The Mission Control Sequence is initialized.

Outside of the cloning process, the GMAT function objects are not a�ected by the �rst two of these
steps. Figure 27.46, copied from Chapter 5, shows the process followed in the fourth step to initialize the
Mission Control Sequence.

Before going into the details of Figure 27.4, I'll describe the activities performed in the �rst two steps.

Initialization Step 1: Passing Objects to the Sandbox The �rst step in initialization is cloning
the objects in the con�guration into the Sandbox. At the start of this step, the system status looks like
Table 27.15. The Interpreter subsystem will not play a role in this part of the initialization process � the
Interpreters remain idle � so I will remove that column for the time being in subsequent tables.

One feature of GMAT's design that can be overlooked is that there is a separate Mission Control Sequence
for each Sandbox, and there is a one-to-one relationship between the Mission Control Sequences and the
Sandbox instances. What that means for this discussion is that the Mission Control Sequence shown in the
table already belongs to the Sandbox shown there. The Mission Control Sequence is not cloned into the
Sandbox7.

Table 27.15: Status Immediately Before Initialization Starts

Con�guration MCS Interpreter Mode SandboxType Name
Spacecraft Sat While Idle Idle, Sandbox Object
ForceModel Prop_FModel +� Propagate Map is Empty
Propagator Prop +� CallFunction
Variable SMA +� Assignment
Variable ECC +� Assignment
Variable RAAN +� Assignment
Variable r +� CallFunction
Variable v +� Assignment
Variable pi2 +� Assignment
Variable mu +� Assignment
Variable d2r +� CallFunction
Variable Energy +� Assignment
Variable SMAError +� If
Variable ECCError +�+� Assignment
Variable RAANError +� EndIf
Array rv +� Assignment
Array vv +� Assignment
Array ev +� Assignment
Array nv +� Report
ReportFile Cart2KepConvert EndWhile
GmatFunction LoadCartState
GmatFunction cross
GmatFunction magnitude

The objects in the con�guration, on the other hand, are contained in GMAT's engine, outside of the
Sandbox. The Moderator accesses these con�gured objects by type, and passes each into the Sandbox

6This �gure needs some modi�cation based on the text in the rest of this document.
7This relationship between the Mission Control Sequences and the array of Sandboxes is managed in the Moderator. The

behavior described here is the default behavior, and is the behavior used in current implementations of GMAT. Implementations
that use multiple Sandboxes � particularly when used in a distributed manner � will implement a di�erent relationship between
the Mission Control Sequence viewed by the user and the Mission Control Sequences in the Sandboxes.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 273

for use in the mission. The Sandbox makes copies of these objects using the object's Clone() method.
These clones are stored in the Sandbox Object Map. The clones contain identical data to the objects in
the con�guration; making clones at this stage preserves the user's settings on the con�gured objects while
providing working copies that are used to run the mission.

Table27.16 shows the status of the system after the Moderator has passed the objects into the Sandbox.
The Sandbox Object Map is a mapping between a text name and a pointer to the associated object. Since
the map is from the name to the object, the Sandbox Object Map in the table lists the name �rst.

Table 27.16: Status Immediately After Cloning into the Sandbox

Con�guration Sandbox
Scripted Name MCS Sandbox Object Map
Type Name Type

Spacecraft Sat While Sat Spacecraft*
ForceModel Prop_FModel +� Propagate Prop_FModel ForceModel*
Propagator Prop +� CallFunction Prop PropSetup*
Variable SMA +� Assignment SMA Variable*
Variable ECC +� Assignment ECC Variable*
Variable RAAN +� Assignment RAAN Variable*
Variable r +� CallFunction r Variable*
Variable v +� Assignment v Variable*
Variable pi2 +� Assignment pi2 Variable*
Variable mu +� Assignment mu Variable*
Variable d2r +� CallFunction d2r Variable*
Variable Energy +� Assignment Energy Variable*
Variable SMAError +� If SMAError Variable*
Variable ECCError +�+� Assignment ECCError Variable*
Variable RAANError +� EndIf RAANError Variable*
Array rv +� Assignment rv Array*
Array vv +� Assignment vv Array*
Array ev +� Assignment ev Array*
Array nv +� Report nv Array*
ReportFile Cart2KepConvert EndWhile Cart2KepConvert ReportFile*
GmatFunction LoadCartState LoadCartState GmatFunction*
GmatFunction cross cross GmatFunction*
GmatFunction magnitude magnitude GmatFunction*
CoordinateSystem8 EarthMJ2000Eq EarthMJ2000Eq CoordinateSystem*
CoordinateSystem EarthMJ2000Ec EarthMJ2000Ec CoordinateSystem*
CoordinateSystem EarthFixed EarthFixed CoordinateSystem*

Once the Moderator has passed the Con�guration into the Sandbox, the mission run no longer depends
on the Con�guration. For that reason, most of the tables shown in the rest of this document will not include
a list of the contents of the con�guration. If needed, the Con�guration will be displayed separately.

Initialization Step 2: Object Initialization Now that the Sandbox has been populated with the
con�gured objects and the Mission Control Sequence, the Moderator can pass control to the Sandbox to
continue the initialization process. This hand o� is made through a call to the Sandbox::Initialize() method.
The Sandbox initializes objects in the following order:

1. CoordinateSystem
8The 3 coordinate systems listed at the end of the con�guration table are automatically created by the Moderator.

Draft: Work in Progress
274 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

2. Spacecraft

3. All others except Parameters and Subscribers

4. System Parameters

5. Other Parameters

6. Subscribers

The initialization of these objects follows this basic algorithm:

• Send the Sandbox's solar system to the object

• Set pointers for all of objects referenced by this object

• Call the object's Initialize() method

The basic initialization for Function objects are part of element 3 in the list above. At that point in
the initialization process, the Function objects are not yet populated, so this step does not perform any
substantive action. The Sandbox checks each GmatFunction to ensure that the path to the function �le is
not empty as part of this initialization.

Initialization Step 3: Global Object Management Once the objects in the Sandbox Object Map are
initialized, the objects �agged as global objects are moved from the Sandbox Object Map into the Global
Object Store. The Sandbox does this by checking the object's isGlobal �ag, a new attribute of the GmatBase
class added for global object management.

Some object types are automatically marked as global objects. All instances of the PropSetup class,
Function classes, and coordinate system classes fall into this category, and are built with the isGlobal �ag
set.

Initialization Step 4: Control Sequence Initialization The �nal step in Sandbox initialization is
initialization of the Mission Control Sequence. This step in the initialization process includes construction
of the Function Control Sequences, and does the �rst portion of initialization that is needed before the
Function Control Sequence can be executed. At this stage in the initialization process, the Global Object
Store contains clones of all of the con�gured objects marked as globals, the Sandbox Object Map contains
clones of all other con�gured objects, and the GmatFunction objects know the locations of the function �les.
The Function Control Sequences are all empty, and the system has not identi�ed any functions called from
inside of functions that are not also called in the Mission Control Sequence. The objects in the Sandbox
Object Map have the connections to referenced objects set, and are ready for use in the Mission Control
Sequence.

So far, we have encountered three GmatFunctions, shown in Table 27.17 with their data structures:

Table 27.17: GmatFunction Status at the Start of Control Sequence Initialization

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

LoadCartState empty NULL empty empty empty empty
cross empty NULL empty empty empty empty
magnitude empty NULL empty empty empty empty

Draft: Work in Progress
27.2. GMAT FUNCTIONS 275

As we will see, the call stack, implemented as the �objectStack� attribute in the GmatFunction class, remains
empty throughout the initialization process.

The Sandbox initialized the Mission Control Sequence by walking through the list of commands in the
sequence, and performing the following tasks on each:

• Send the pointers to the Sandbox Object Map and the Global Object Map to the command

• Set the solar system pointer for the command

• Set the transient force vector for the command

• If the command uses a GmatFunction, build that function as described below

• Call the command's Initialize() method

In order to see how these actions work with GmatFunctions, we'll continue walking through the sample
script. For clarity's sake, it is useful to have a complete picture of the contents of the Mission Control
Sequence. The Mission Control Sequence, listed by node type and script line, and numbered for reference,
can be written like this:

1 While While Sat.ElapsedDays < 1
2 Propagate Propagate Prop(Sat)
3 CallFunction [rv, vv, r, v] = LoadCartState(Sat);
4 Assignment Energy = v�2/2 - mu/r;
5 Assignment SMA = -mu/2/Energy;
6 Assignment ev = cross(vv,cross(rv, vv))/mu - rv/r;
7 CallFunction [ECC] = magnitude(ev);
8 Assignment nv(1,1) = x*vz-z*vx;
9 Assignment nv(2,1) = y*vz-z*vy;
10 Assignment nv(3,1) = 0;
11 CallFunction [n] = magnitude(nv);
12 Assignment RAAN = acos(nv(1,1)/n);
13 If If nv(2,1) < 0;
14 Assignment RAAN = (pi2 - RAAN) / d2r;
15 EndIf EndIf;
16 Assignment SMAError = Sat.SMA - SMA;
17 Assignment ECCError = Sat.ECC - ECC;
18 Assignment RAANError = Sat.RAAN - RAAN;
19 Report Report Cart2KepConvert Sat.SMA SMA SMAError ...

Sat.ECC ECC ECCError Sat.RAAN RAAN RAANError
20 EndWhile EndWhile

(The line of script associated with each node is shown on the right in this list.)
At the start of the Mission Control Sequence initialization, the Sandbox Object Map and Global Object

Store contain the following items:

Draft: Work in Progress
276 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Table 27.18: The Sandbox Maps

Sandbox Object Map Global Object Store
Name Type Name Type

Sat Spacecraft* Prop PropSetup*
Prop_FModel ForceModel* EarthMJ2000Eq CoordinateSystem*
Prop PropSetup* EarthMJ2000Ec CoordinateSystem*
SMA Variable* EarthFixed CoordinateSystem*
ECC Variable* LoadCartState GmatFunction*
RAAN Variable* cross GmatFunction*
r Variable* magnitude GmatFunction*
v Variable*
pi2 Variable*
mu Variable*
d2r Variable*
Energy Variable*
SMAError Variable*
ECCError Variable*
RAANError Variable*
rv Array*
vv Array*
ev Array*
nv Array*
Cart2KepConvert ReportFile*
LoadCartState GmatFunction*
cross GmatFunction*
magnitude GmatFunction*
EarthMJ2000Eq CoordinateSystem*
EarthMJ2000Ec CoordinateSystem*
EarthFixed CoordinateSystem*

These maps stay the same until either a Global command is encountered or a Create command is encountered
that creates an object that is automatically global.

The steps listed above for command initialization are performed for the �rst two commands in the list,
items 1 and 2, without changing any of the object maps or function attributes. Item 3:

[rv, vv, r, v] = LoadCartState(Sat);

is a CallFunction that initializes a GmatCommand, so we need to look more closely at the initialization for
this line.

The CallFunction at this point has a FunctionManager which contains the name of a GmatFunction
object and StringArrays for the inputs and outputs. The StringArrays contain the following data:

inputNames = {"Sat"}
outputNames = {"rv", "vv", "r", "v"}

The Sandbox passes the pointers for the Sandbox Object Map and the Global Object Store to the
CallFunction command. Once the CallFunction has received the Global Object Store, it uses that mapping
to locate the function needed by the Function Manager, and passes the pointer to that function into the
FunctionManager. The FunctionManager determines the type of the function � in this example, the function
is a GmatFunction. The function attributes at this point are shown in Table 27.19.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 277

Table 27.19: GmatFunction Status after Setting the GOS and SOM

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

LoadCartState empty Set empty empty empty empty
cross empty NULL empty empty empty empty
magnitude empty NULL empty empty empty empty

The Sandbox then passes in the pointers to the solar system and transient force vector, which the Call-
Function passes into the FunctionManager. Since the function in the FunctionManager is a GmatFunction,
these pointers will be needed later in initialization and execution, so the FunctionManager passes these
pointers into the function for later use. (If the function in the FunctionManger was not a GmatFunction,
the pointers would have been discarded.)

At this point, all of the items needed to build the Function Control Sequence exist. The Sandbox
retrieves the pointer for the GmatFunction from the CallFunction command. It checks to see if the function's
Function Control Sequence has been built. If the Function Control Sequence is NULL, the Sandbox calls
the Moderator::InterpretGmatFunction() method to construct the Function Control Sequence, which in turn
calls the ScriptInterpreter::InterpretGmatFunction() method. Both of these calls take the function pointer
as input arguments, so that the interpreter has the local Sandbox instance of the GmatFunction that it uses
to build the Function Control Sequence. The ScriptInterpreter::InterpretGmatFunction() method builds the
Function Control Sequence and returns it, through the Moderator, to the Sandbox.

The LoadCartState GmatFunction that is constructed here is built from this scripting:

function [rv, vv, r, v] = LoadCartState(Sat);

% This function fills some arrays and variables with
% Cartesian state data

Create Variable r v
Create Array rv[3,1] vv[3,1]

rv(1,1) = Sat.X;
rv(1,2) = Sat.Y;
rv(1,3) = Sat.Z;
vv(1,1) = Sat.VX;
vv(1,2) = Sat.VY;
vv(1,3) = Sat.VZ;

[r] = magnitude(rv);
[v] = magnitude(vv);

The process followed in the ScriptInterpreter::InterpretGmatFunction() method will be described below.
Upon return from this function call, the functions contain the attributes shown in Table 27.20.

Draft: Work in Progress
278 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Table 27.20: GmatFunction Status after Building the LoadCartState FCS

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

LoadCartState empty Set 'Sat'->NULL 'rv'->NULL
'vv'->NULL
'r'->NULL
'v'->NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

cross empty NULL empty empty empty empty
magnitude empty NULL empty empty empty empty

The Sandbox then checks the Function Control Sequence generated in the ScriptInterpreter, and checks
to see if that sequence contains a GmatFunction. If it does, then for each GmatFunction encountered, the
process is repeated.

The Sandbox checks the Function Control Sequence by starting at the �rst node, and checking each
Assignment and CallFunction command in that control sequence to see if it references a GmatFunction.
Our example script does contain such a call to a GmatFunction � it calls the magnitude function twice,
in the last two CallFunction commands in the Function Control Sequence. Each of the FunctionManagers
associated with these CallFunction commands have StringArrays containing the names of the input and
output objects that will be used during execution � more speci�cally, the FunctionManager associated with
the �rst CallFunction has these StringArrays:

inputNames = {"rv"}
outputNames = {"r"}

while the second has these:

inputNames = {"vv"}
outputNames = {"v"}

When the Sandbox detects the GmatFunction in the �rst CallFunction command, it performs the same
tasks as were performed on the CallFunction in the Mission Control Sequence � more speci�cally:

1. The Sandbox passes the pointer for the Global Object Store to the CallFunction command. (Note
that the Sandbox does not pass in the Sandbox Object Map; the Sandbox Object Map is only used in
commands in the Mission Control Sequence.)

2. Once the CallFunction has received the Global Object Store, it uses that mapping to locate the function
needed by the FunctionManager.

• If the function was found, the CallFunction passes the pointer to that function into the Function-
Manager

• If the function was not found, the pointer referenced by the Function Manager remains NULL.

3. The FunctionManager determines the type of the function. If the function is not a GmatFunction, the
process ends.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 279

4. The Sandbox passes the pointers to the solar system and transient force vector to the CallFunction,
which passes them into the FunctionManager.

5. The FunctionManager passes these pointers into the function for later use.
At this point, all of the items needed to build the nested Function Control Sequence exist. Returning to

our example, the state of the function object attributes at this point is shown in Table 27.21.
Table 27.21: GmatFunction Status after Detecting the First Nested CallFunction

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

LoadCartState empty Set 'Sat'->NULL 'rv'->NULL
'vv'->NULL
'r'->NULL
'v'->NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

cross empty NULL empty empty empty empty
magnitude empty Set empty empty empty empty

The Sandbox then calls the Moderator::InterpretGmatFunction() method to build the Function Control
Sequence for the magnitude command. The magnitude function is scripted like this:

function [val] = magnitude(vec1)

% This function takes a 3-vector in a GMAT array and
% calculates its magnitude
Create Variable val
val = sqrt(dot(vec1, vec1));

so the resulting Function Control Sequence and other attributes have the values shown in Table 27.22 when
the Moderator returns control to the Sandbox.

Table 27.22: GmatFunction Status after Parsing the First Nested CallFunction

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

LoadCartState empty Set 'Sat'->NULL 'rv'->NULL
'vv'->NULL
'r'->NULL
'v'->NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

Continued on next page

Draft: Work in Progress
280 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Continued from previous page

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

cross empty NULL empty empty empty empty
magnitude empty Set 'vec1'->NULL 'val'->NULL Create

Assignment
empty

The Assignment command in the newly created Function Control Sequence is particularly interesting,
because it contains inline mathematics, which use a previously unencountered GmatFunction named dot.
The MathTree for this Assignment command is shown in Figure 27.5.

Figure 27.5: The MathTree for the Assignment command in the magnitude GmatFunction

Note that while the dot GmatFunction has been identi�ed as a needed element for the Assignment line,
there is not yet an instance of a GmatFunction object that is associated with the dot function, even though
the MathTree shown in Figure 27.5 has a FunctionRunner MathNode that requires it. This issue will be
resolved shortly.

The Sandbox takes this new Function Control Sequence, and checks it for the presence of a GmatFunction
by walking through the list of commands in the control sequence. When it checks the Assignment command,
it �nds that there is a function dependency, and that the associated function does not exist in the Global
Object Store. Since all function types except for GmatFunctions must be created before they can be used,
the Sandbox assumes that the needed function is a GmatFunction and asks the Moderator to create an
unnamed GmatFunction9.

The Moderator calls the Factory Manager to create the function, and returns the pointer of the new
function to the Sandbox. The Sandbox then sets its name to be �dot� and adds it to the Global Object
Store. The Sandbox also performs the preinitialization steps described above: it sets the solar system pointer
and transient force vector pointer on the function, sets any pointers referenced by the function, and calls the
function's Initialize() method. Finally, the Sandbox calls the Moderator to locate the function �le for the
GmatFunction and sets the path to the �le, completing this piece of the initialization. The Sandbox then
passes the function pointer to the Assignment command, which passes it, in turn, into the FunctionRunner
node. At this point, the Sandbox can continue initializing the Assignment command. The GmatFunction
data is set as shown in Table 27.23.

Table 27.23: GmatFunction Status after Creating the dot Function

9The GmatFunction is unnamed so that it will not be passed to the con�guration.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 281

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

LoadCartState empty Set 'Sat'->NULL 'rv'->NULL
'vv'->NULL
'r'->NULL
'v'->NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

cross empty NULL empty empty empty empty
magnitude empty Set 'vec1'->NULL 'val'->NULL Create

Assignment
empty

dot empty NULL empty empty empty empty

Recall that we are at the point in the initialization where the Sandbox is checking the Function Control
Sequence for the magnitude GmatFunction for internal function calls. The Sandbox found the dot function
as an internal dependency, and built the corresponding GmatFunction. The �nal step performed by the
Sandbox at this point is to build the Function Control Sequence for the dot command. The text of the dot
�le looks like this:

function [val] = dot(vec1, vec2)

% This function takes two 3-vectors in a GMAT array and
% constructs their dot product
Create Variable val
val = vec1(1,1) * vec2(1,1) + vec1(2,1) * vec2(2,1) +...

vec1(3,1) * vec2(3,1);

The Sandbox calls the Moderator::InterpretGmatFunction() method to build the control sequence for the
dot function. Upon return, the function attribute table has the contents shown in Table 27.24.

Table 27.24: GmatFunction Status after Interpreting the dot Function

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

LoadCartState empty Set 'Sat'->NULL 'rv'->NULL
'vv'->NULL
'r'->NULL
'v'->NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

cross empty NULL empty empty empty empty
Continued on next page

Draft: Work in Progress
282 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Continued from previous page

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

magnitude empty Set 'vec1'->NULL 'val'->NULL Create
Assignment

empty

dot empty Set 'vec1'->NULL
'vec2'->NULL

'val'->NULL Create
Assignment

empty

The Sandbox takes the Function Control Sequence built for the dot function, and checks it for internal
function calls. There is an Assignment command in this control sequence that references inline mathematics,
but the corresponding MathTree does not contain any functions. Therefore, the initialization for the dot
function is complete, and the method that built it returns control to the calling method.

In this case, the calling method is actually the same method that called the �rst CallFunction � the call
was a recursive call, because we were checking the Function Control Sequence for the dot function, which
was called part way through the check of the Function Control Sequence for the magnitude function.

That call was made for the Assignment command in the magnitude function. The check for the magnitude
Assignment command has now built all of the functions it needs, so control is returned to the method that
was performing the check on the magnitude function.

Again, the calling method is the method that checks for function calls, this time for the �rst CallFunction
in the LoadCartState function. All of the function references in that CallFunction have been resolved and
initialized, so the function check method moves to the second CallFunction. That CallFunction makes a call
to the magnitude function. All of the internal structures needed to execute the magnitude function have been
built, following the procedures discussed above. The check for this CallFunction does detect that there is a
GmatFunction in the call � a call to the magnitude function. It then checks the magnitude GmatFunction,
and �nds that it has been initialized, so it proceeds to the next command in the LoadCartState Function
Control Sequence. Since this second CallFunction was the last command in that Function Control Sequence,
the LoadCartState function control sequence is now fully initialized and ready to execute.

We have now initialized all of the system except for the cross function. The Sandbox is partway through
the check on the Mission Control Sequence for function calls � all of the preceding GmatFunction initialization
was performed to fully initialize the CallFunction command in the Mission Control Sequence. The next
function encountered in the main script is in the third Assignment command. That command was generated
by the script line

ev = cross(vv, cross(rv, vv)) / mu - rv / r;

When the Sandbox checks that line, it �nds that there are two FunctionRunner nodes in the associated
MathTree. The �rst of these nodes requires an initialized cross function, so the Sandbox follows the process
described above to build the Function Control Sequence for the cross function. Once this �rst node has been
handled by the Sandbox, the function attribute table looks like Table 27.25.

Table 27.25: GmatFunction Status after Interpreting the cross Function

Draft: Work in Progress
27.2. GMAT FUNCTIONS 283

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

LoadCartState empty Set 'Sat'->NULL 'rv'->NULL
'vv'->NULL
'r'->NULL
'v'->NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

Continued on next page

Draft: Work in Progress
284 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Continued from previous page

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control
Sequence

Call Stack

cross empty Set 'vec1'->NULL
'vec2'->NULL

'vec3'-
>NULL

Create
Assignment
Assignment
Assignment

empty

magnitude empty Set 'vec1'->NULL 'val'->NULL Create
Assignment

empty

dot empty Set 'vec1'->NULL
'vec2'->NULL

'val'->NULL Create
Assignment

empty

The Sandbox then checks the second FunctionRunner node, and �nds that it uses a function that has
already been built � the cross function � so no further action is necessary for this Assignment command. It
moves to the next command in the Mission Control Sequence, and �nds that that command � a CallFunction
that uses the magnitude GmatFunction � is also ready to execute. This process continues through all of
the remaining commands in the Mission Control Sequence. All of the commands and called functions have
been initialized, so the commands and functions used in the Sandbox have now been fully prepared for the
mission run.

Additional Notes on Initialization

Function and FunctionManager Status Summary The scripting in our example generates seven
speci�c places where a FunctionManager interface is built in order to implement the structure needed to run
a GmatFunction. Table 27.26 shows each of these interfaces, along with the string descriptors that are set
in the interface tables for each of these instances. The actual data structures that contain the input and
output objects are not set during initialization; they are built the �rst time the function is called during
execution of the Mission Control Sequence. That process is described in the execution section of this text.

Table 27.26: Summary of the Function Interfaces

Script Line Interface
Type

Function Manager Function
inputNames outputNames name inputs outputs

[rv, vv, r, v] =
LoadCartState(
Sat)

Call-
Function

'Sat' 'rv'
'vv'
'r'
'v'

LoadCart-
State

'Sat'->NULL 'rv'->NULL
'vv'-> NULL
'r'->NULL
'v'->NULL

ev = cross(vv,
cross(rv, vv)) /
mu - rv / r;

Function-
Runner
(Two in-
stances)

'rv'
'vv'

� cross (inner
instance)

'vec1'->
NULL
'vec2'->
NULL

'vec3'->
NULL

'vv'
�

� cross (outer
instance)

'vec1'->
NULL
'vec2'->
NULL

'vec3'->
NULL

[ECC] = magni-
tude(ev)

Call-
Function

'ev' 'ECC' magnitude 'vec1'->
NULL

'val'-> NULL

[n] = magni-
tude(nv)

Call-
Function

'nv' 'n' magnitude 'vec1'->
NULL

'val'-> NULL

Continued on next page

Draft: Work in Progress
27.2. GMAT FUNCTIONS 285

Continued from previous page

Script Line Interface
Type

Function Manager Function
inputNames outputNames name inputs outputs

[r] = magni-
tude(rv)

Call-
Function

'rv' 'r' magnitude 'vec1'->
NULL

'val'-> NULL

[v] = magni-
tude(vv)

Call-
Function

'vv' 'v' magnitude 'vec1'->
NULL

'val'-> NULL

val = sqrt(dot(
vec1, vec1));

Function-
Runner

'vec1'
'vec1'

� dot 'vec1'->
NULL
'vec2'->
NULL

'val'-> NULL

Before we examine execution, a few items should be mentioned about the work performed in the Script-
Interpreter when the InterpretGmatFunction() method is invoked.

Details of the ScriptInterpreter::InterpretGmatFunction() Method The Interpreter::Interpret-
GmatFunction()10 method is very similar to the ScriptInterpreter::Interpret() method. The di�erences arise
in the Interpreter state, the parsing for the function line in the function �le, and the management of the
commands created during the parsing of the function �le.

The InterpretGmatFunction() method has this signature:

GmatCommand* Interpreter::InterpretGmatFunction(Function *funct)

The InterpretGmatFunction() method does not manage state in the same sense as the Interpret() method.
At the point that the InterpretGmatFunction() method is invoked, there is no longer a sense of �object mode�
and �command mode,� because every executable line in a GmatFunction �le has an associated command �
in other words, there is no �object mode� at this point in the process. Since there is no sense in tracking
state, the Interpreter treats the entire time spent reading and building the GmatFunction as if it were in
Command mode.

When the InterpretGmatFunction() method is invoked, it takes the Function pointer from the function's
argument list and retrieves the function �le name and path from that object. It opens the referenced �le,
and uses the ScriptReadWriter and TextParser helper classes to parse the function �le, one logical block at
a time.

The �rst logical block in a GmatFunction �le de�nes the function, and must start with the �function�
keyword. An example of this line can be see in the �rst line of the cross function in Listing 5:

function [vec3] = cross(vec1, vec2)

If the keyword �function� is not encountered as the �rst element in the command section of the the �rst logical
block in the �le, the method throws an exception stating that the Interpreter expected a GmatFunction �le,
but the function de�nition line is missing.

The remaining elements in this logical block are used to check the function name for a match to the
expected name, and to set the input and output argument lists for the function. The list contained in square
brackets is sent, one element at a time, into the function as the output elements using the SetStringPa-
rameter() method. Similarly, the function arguments in parentheses following the function name generate
calls to the SetStringParameter() method, setting the names for the input arguments. Thus, for example,
the function de�nition line above for the cross function generates the following calls into the GmatFunction
object that was passed into the InterpretGmatFunction() method:

10While this method is most naturally assigned to the ScriptInterpreter � since it is interpreting a text �le describing the
function � the method itself is found in the Interpreter base class.

Draft: Work in Progress
286 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

// Calls that are made to the cross function. These are not
// intended to be actual code; they are representative calls.
// The actual code will loop through the argument lists rather
// than perform the linear process shown here.

// Given these values from the TextParser:
// inputList = {``vec1'', ``vec2''}
// functionName = ``cross''
// outputList = {``vec3''}

// First check the name
if (functionName != funct->GetName())

throw CommandException("The GmatFunction \"" +
funct->GetName() + "\" in the file \"" +
funct->GetStringParameter("Filename") +
"\" does not match the function identifier in the file.");

// Next set the input argument(s)\newline
funct->SetStringParameter(INPUTPARAM_ID, inputList[0]);
funct->SetStringParameter(INPUTPARAM_ID, inputList[1]);

// And the output argument(s):
funct->SetStringParameter(OUTPUTPARAM_ID, outputList[0]);

(Of course, the exception message should be changed to conform to GMAT's usual message formats.) The
code in the GmatFunction is built to receive these values, and populate the internal data structures accord-
ingly. This, for example, when the line

funct->SetStringParameter(INPUTPARAM_ID, inputList[0]);

is executed, the GmatFunction checks the inputs map and, if the input value is not in the map, adds it to
the map, something like this:

// on this call: SetStringParameter(INPUTPARAM_ID, "vec1"),
// the GmatFunction does this:

if (inputs.find("vec1") == inputs.end())
inputs["vec1"] = NULL;

else
throw FunctionException("Invalid operation: an attempt was"

" made to add an input argument named \"" + "vec1" +
"\", but an argument with that name already exists.");

Once the function de�nition line has been parsed, the process followed to build the Function Control
Sequence begins. The Function Control Sequence is built using the same process as is followed for the Mission
Control Sequence: the function �le is read one logical block at a time, the command corresponding to that
logical block is constructed, and the command is appended to the control sequence. The only di�erence
for this phase of initialization is this: when GMAT is building a Mission Control Sequence, the sequence
that receives the new commands is the Mission Control Sequence associated with the current Sandbox. For
GmatFunction, the control sequence is the Function Control Sequence associated with the current function.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 287

27.2.2.3 GmatFunction Execution
Once the Mission Control Sequence and all referenced Function Control Sequences have been initialized, they
are ready for execution in the Sandbox. The Moderator launches execution by calling the Sandbox::Execute()
method. When this method is called, the Sandbox sets an internal pointer to the �rst command in the Mission
Control Sequence, and then enters a loop that walks through the Mission Control Sequence one command
at a time. For each command in the Mission Control Sequence, the Sandbox performs the following actions:

1. Check to see if a user interrupt has occurred, and if so, respond to it.

2. Call the Execute() method on the current command.

3. Set the current command pointer to the command returned by calling GetNext() on the command that
just executed.

4. If the new current command pointer is not NULL, loop to step 1; otherwise, the Mission Control
Sequence is �nished executing and control returns to the Moderator.

In this section, we will examine the behavior of the execution of the commands that reference GmatFunc-
tions exclusively. Readers interested in the general execution of the Mission Control Sequence are referred
to Chapters 3 through 5 and Chapter 23 of the GMAT Architectural Speci�cation.

The �rst command that references a GmatFunction is the command near the top of the While loop which
was generated by this text:

[rv, vv, r, v] = LoadCartState(Sat);

This script line generates a CallFunction command. That CallFunction has a FunctionManager that
references the LoadCartState GmatFunction. The �rst time Execute() is called for this CallFunction, these
objects have the attributes shown in Table 27.27. (For the CallFunction, only the pointers needed in this
discussion are shown in the object stores. The example used here does not use any global objects, so just
the status of the Global Object Store is not indicated.)

Table 27.27: CallFunction Attributes Prior to First Execution

CallFunction FunctionManager LoadCartState Function
Sandbox
Object
Store

Global
Object
Store

input-
Names

output-
Names

Function
Object
Store

inputs outputs
Function
Object
Store

Global
Object
Store

Sat
rv
vv
r
v

set 'Sat' 'rv'
'vv'
'r'
'v'

empty Sat->NULL rv->NULL
vv->NULL
r->NULL
v->NULL

NULL NULL

The �rst time a CallFunction or FunctionRunner is executed, the �nal piece of initialization is performed
so that all of the data structures used for the execution are set and the Function Control Sequence is fully
initialized. Subsequent calls into the same CallFunction or FunctionRunner updates the data used in the
function calls by copying the data into the Function Object Store using the object's assignment operator.
Both of these processes are described below, and illustrated using our sample functions.

Steps Performed on the First Execution The �rst time a CallFunction or FunctionRunner executes,
the following processes are performed:

1. The CallFunction tells the FunctionManager to build the Function Object Store. The FunctionManager
performs the following actions in response:

Draft: Work in Progress
288 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

• First the input arguments are set up:
� The FunctionManager looks �rst in the Local Object Store, then in teh Global Object Store,

and �nds each input object listed in the inputNames StringArray
� The input object is cloned, using its Clone() method, and wrapped in an ObjectWrapper11
� The Function is queried for the name of the matching input argument
� The clone is set in the Function Object Store, using the function's argument name as the

map key
� An ElementWrapper is built for the clone
� The ElementWrapper is passed to the Function as the input argument

• Then the output arguments are set up:
� The FunctionManager �nds each output object listed in the outputNames StringArray
� The output object is stored in an ObjectArray for later use

• If this process fails for any input or output object, an exception is thrown and the process termi-
nates

• The Function Object Store and Global Object Store are passed into the Function

At this point, the objects managed by this CallFunction have the attributes shown in Table 27.28.

Table 27.28: CallFunction Attributes After Building the Function Object Store

CallFunction FunctionManager LoadCartState Function
Sandbox
Object
Store

Global
Object
Store

input-
Names

output-
Names

Function
Object
Store

inputs outputs
Function
Object
Store

Global
Object
Store

Sat
rv
vv
r
v

set 'Sat' 'rv'
'vv'
'r'
'v'

'Sat'->
Sat
clone

Sat-> clone
wrapper

rv->NULL
vv->NULL
r->NULL
v->NULL

set set

2. Initialize the Function by calling Function->Initialize(). This call makes the Function complete initial-
ization for each command in the Function Control Sequence. Each command in the Function Control
Sequence (1) receives the pointer to the Function Object Store, Global Object Store, transient force
vector, and Solar System, and then (2) calls the Initialize() method on the command.

3. Execute the Function Control Sequence by walking through the linked list of commands in the sequence,
calling Execute() on each command in the sequence and using the command's GetNext() method to
access the next command that is executed. Some details are provided below for the behavior of
CallFunction commands and FunctionRunner MathNodes encountered during this process.
Create commands encountered during this execution sequence add their objects to the Function Object
Store. Global commands add the identi�ed objects to the Global Object Store as well. At the end of
the execution step, the attributes for the CallFunction example are listed in Table 27.29. Note that
the pointers in the outputs attribute have not been set yet.

Table 27.29: CallFunction Attributes After Executing the Create commands

11For the examples shown here, the function arguuments are all objects, so they use ObjectWrappers. Other data types �
real numbers, for example � use wrappers compatible with their type.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 289

CallFunction FunctionManager LoadCartState Function
Sandbox
Object
Store

Global
Object
Store

input-
Names

output-
Names

Function
Object
Store

inputs outputs
Function
Object
Store

Global
Object
Store

Sat
rv
vv
r
v

set 'Sat' 'rv'
'vv'
'r'
'v'

'Sat'->
Sat
clone
'rv'->rv
'vv'->vv
'r'->r
'v'->v

Sat-> clone
wrapper

rv->NULL
vv->NULL
r->NULL
v->NULL

set set

4. Retrieve the output data generated from the execution, and use it to set data in the output arguments
that were stored in step 1. The output arguments are retrieved through a call to

ElementWrapper* Function::GetOutputArgument(Integer argNumber)

which �nds the output argument at the indicated location and returns it

5. Reset the Function Control Sequence so it is ready for subsequent calls to this function. The �nal state
of the function attributes is shown in Table 27.30.

Table 27.30: CallFunction Attributes After Execution

CallFunction FunctionManager LoadCartState Function
Sandbox
Object
Store

Global
Object
Store

input-
Names

output-
Names

Function
Object
Store

inputs outputs
Function
Object
Store

Global
Object
Store

Sat
rv
vv
r
v

set 'Sat' 'rv'
'vv'
'r'
'v'

'Sat'->
Sat
clone
'rv'->rv
'vv'->vv
'r'->r
'v'->v

Sat-> clone
wrapper

rv->rv
vv->vv
r->r
v->v

NULL set

Steps Performed on the Subsequent Executions Subsequent calls into a CallFunction or Function-
Runner that has executed once have a simpli�ed �rst step, because the structures in the FunctionManager
are initialized in the �rst call. Subsequent calls follow the following procedure:

1. The CallFunction tells the FunctionManager to refresh the Function Object Store. The FunctionMan-
ager performs the following actions in response:

• The input arguments are updated using the assignment operator to set the clones equal to the
original objects.

• The Function Object Store is passed into the Function.

At this point, the objects managed by this CallFunction have the attributes shown in Table 27.31.

Table 27.31: CallFunction Attributes After Execution

Draft: Work in Progress
290 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

CallFunction FunctionManager LoadCartState Function
Sandbox
Object
Store

Global
Object
Store

input-
Names

output-
Names

Function
Object
Store

inputs outputs
Function
Object
Store

Global
Object
Store

Sat
rv
vv
r
v

set 'Sat' 'rv'
'vv'
'r'
'v'

'Sat'->
Sat
clone

Sat-> clone
wrapper

rv->NULL
vv->NULL
r->NULL
v->NULL

set set

2. Initialize the Function by calling Function->Initialize(). This call makes the Function complete initial-
ization for each command in the Function Control Sequence. Each command in the Function Control
Sequence (1) receives the pointer to the Function Object Store, Global Object Store, transient force
vector, and Solar System, and then (2) calls the Initialize() method on the command. (This repetition
of step 2 is required because the same function can be called from multiple locations, with di�erent
input objects, so the object pointers in the Function Control Sequence have to be refreshed each time
a function is entered.)

3. Execute the Function Control Sequence by walking through the linked list of commands in the sequence,
calling Execute() on each command in the sequence and using the command's GetNext() method to
access the next command that is executed.

4. Retrieve the output data generated from the execution, and use it to set data in the output arguments.

5. Reset the Function Control Sequence so it is ready for subsequent calls to this function.

Functions within Functions GmatFunctions can call other GmatFunctions, either in a nested manner,
or by calling recursively into the same function. When a GmatFunction detects that it is about to call into a
GmatFunction in this manner, it needs to preserve the current state of the function data so that, upon return
from the nested call, the function can resume execution. This preservation of function data is accomplished
using a call stack, implemented as the GmatFunction::objectStack data member.

An example of the use of the call stack can be seen in the example script that we've been working
through. The �rst function call, made to the LoadCartState function, uses a CallFunction in the Mission
Control Sequence. When the Sandbox calls this function, the steps outlined in the previous section are
performed, initializing and setting the Function Object Store and Function Control Sequence, and then
calling the Execute method on each command in the Function Control Sequence to run the function. The
use of the call stack can be seen when we examine the details of this process, as we will do in the following
paragraphs.

When the Sandbox receives a message to execute the Mission Control Sequence, it sets its state to
�RUNNING� and sets the current command pointer to the �rst command in the Mission Control Sequence.
For our example, that means the current pointer start out pointing to the While command generated by this
line of script:

While Sat.ElapsedDays {\textless} 1

The command is executed, and control returned to the Sandbox. The Sandbox then calls the GetNext()
method to determine the next command to execute. The command pointer returned from that call points
back to the While command again, because the While command is a branch command. The Sandbox polls
for a user interrupt, and then calls the Execute() method on the While command again. The While command
begins the execution of the commands inside of the While loop by calling its ExecuteBranch() method. That
call executes the �rst command in the while loop,

Propagate Prop(Sat)

Draft: Work in Progress
27.2. GMAT FUNCTIONS 291

which advances the spacecraft one step and returns control to the While command. The While command
then calls GetNext() on the Propagate command that just executed, and sets its loop command pointer to
the returned value � in this case, a pointer to the CallFunction command generated by this line:

[rv, vv, r, v] = LoadCartState(Sat);

The While command then returns control to the Sandbox. The Sandbox calls GetNext() on the While
command, and receives, again, a pointer back to the While command, since the While command is running
the commands in the while loop. The Sandbox polls for interrupts, and then calls Execute() on the While
command, which calls ExecuteBranch(), which, in turn, calls Execute() on the CallFunction command.
The CallFunction command and FunctionManager have completed initialization of the GmatFunction as
described above, and the CallFunction has made a call into the FunctionManager::Execute() method to run
the function. The following discussion picks up at that point. I'll refer to this long sequence of calls as the
�Sandbox call chain� for the rest of this section � in other words, the Sandbox call chain is the sequence

Sandbox::Execute() --> While::Execute()
--> While::ExecuteBranch()
--> CallFunction::Execute()
--> FunctionManager::Execute()

The function that is executing at this point is the LoadCartState GmatFunction, which has the Function
Control Sequence, Function Object Store, and call stack shown in Table 27.32. The functions called during
execution of this function are also listed in this table, along with their attributes. The pointer in the FCS
column shows the next command that will be executed; for example, the �rst Create command in the
LoadCartState will be executed at the point where we resume discussion of the actual process in the next
paragraph.

Table 27.32: Attributes of the LoadCartState GmatFunction and Subfunctions

LoadCartState magnitude dot
FCS FOS Call

Stack FCS FOS Call
Stack FCS FOS Call

Stack
>Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

Sat
clone

empty Create
Assignment

NULL empty Create
Assignment

NULL empty

The �rst call on the Sandbox call chain at this point executes the Create command

Create Variable r v

placing the variables r and v into the function object store, as is shown in Table27.33.

Table 27.33: Attributes of the LoadCartState GmatFunction After the Executing the First Create Command

Draft: Work in Progress
292 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

LoadCartState magnitude dot
FCS FOS Call

Stack FCS FOS Call
Stack FCS FOS Call

Stack
Create
>Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

Sat
clone
r
v

empty Create
Assignment

NULL empty Create
Assignment

NULL empty

The next call executes the second Create command

Create Array rv[3,1] vv[3,1]

adding the rv and vv arrays to the Function Object Store. The next six calls execute the six assignment
commands that are used to set the elements of the rv and vv arrays:

rv(1,1) = Sat.X;
rv(1,2) = Sat.Y;
rv(1,3) = Sat.Z;
vv(1,1) = Sat.VX;
vv(1,2) = Sat.VY;
vv(1,3) = Sat.VZ;

Once all of these commands have executed, the attributes contain the data shown in Table 27.34, the
next command to be executed is the �rst CallFunction command, and the function is ready to call the �rst
nested function.

Table 27.34: Attributes of the LoadCartState Function After the Executing the Six Assignment Commands

LoadCartState magnitude dot
FCS FOS Call

Stack FCS FOS Call
Stack FCS FOS Call

Stack
Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
>CallFunction
CallFunction

Sat
clone
r
v
rv
vv

empty Create
Assignment

NULL empty Create
Assignment

NULL empty

The CallFunction that is about to be invoked was generated from the script line

[r] = magnitude(rv);

Whenever the Sandbox call chain invokes a command, the following actions occur in the FunctionManager-
::Execute() method:

Draft: Work in Progress
27.2. GMAT FUNCTIONS 293

1. The FunctionManager::Execute() method checks to see if the command that needs to be executed
makes a function call. If it does:

• A �ag is set indicating that a nested function is being run. (This �ag is used to prevent repetition
of the following bullets when the FunctionManager::Execute() method is reentered after polling
for a user interrupt.)

• The Function Object Store is cloned.
• The Function Object Store is placed on the call stack.
• The nested function (or functions, if more than one function call is made) is initialized. The clone

of the Function Object Store made in step 1 is used as the Local Object Map that supplies the
arguments that are set in the new Function Object Store, which is then passed to the nested
function during this initialization.

2. The Execute() method is called for the command.

3. The GetNext() method is called for the command. If the pointer returned from this call is NULL, the
�ag set in step 1 is cleared.

4. Control is returned to the caller so that interrupt polling can occur.

Once this process is started, calls from the Sandbox call chain into the FunctionManager::Execute() method
as the result of polling for user interrupts skip the �rst step.

For the CallFunction command under discussion here, the attribute table shown in Table 27.35 describe
the internal state of the data immediately following the initialization in step one.

Table 27.35: The LoadCartState Function after Initializing the First CallFunction

LoadCartState magnitude dot
FCS FOS Call

Stack FCS FOS Call
Stack FCS FOS Call

Stack
Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
>CallFunction
CallFunction

Clones
of:
Sat
clone
r
v
rv
vv

Original
FOS:
Sat
clone
r
v
rv
vv

>Create
Assignment

'vec1'-
> clone
of vv
clone

empty Create
Assignment

NULL empty

The magnitude GmatFunction is now ready to be run through the LoadCartState function. The next
call through the Sandbox call chain invokes a call to the magnitude function's Create() command, which
builds a variable named val. Table 27.36 shows the attributes after running this command.

Table 27.36: Attributes of the Function After Running the First magnitude Command

Draft: Work in Progress
294 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

LoadCartState magnitude dot
FCS FOS Call

Stack FCS FOS Call
Stack FCS FOS Call

Stack
Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
>CallFunction
CallFunction

Clones
of:
Sat
clone
r
v
rv
vv

Original
FOS:
Sat
clone
r
v
rv
vv

Create
>Assignment

'vec1'-
> clone
of vv
clone
val

empty Create
Assignment

NULL empty

The next call through the Sandbox call chain invokes the magnitude function's Assignment command,
built o� of this line of script:

val = sqrt(dot(vec1, vec1));

The right side of this equation generates a MathTree. One node of that MathTree is a FunctionRunner,
constructed to run the dot GmatFunction. Hence the check performed by the FunctionManager that is
running the magnitude function detects that there is a nested function call in its Assignment command.
Accordingly, when it is time to evaluate the MathTree, the controlling FunctionManager passes a pointer to
itself, through the Assignment command, into the MathTree, which passes that pointer to each Function-
Runner node in the tree. Then when the MathTree makes the call to evaluate the FunctionRunner node, the
FunctionRunner starts by calling the controlling FunctionManager::PushToStack() method, which clones its
local Function Object Store, places the original on its call stack, and build the Function Object Store for
the nested function. It then sets the clone as the Function Object Store for the FunctionManager inside of
the FunctionRunner, and calls that FunctionManager's Evaluate() method. The Evaluate method starts by
initializing the function, using the newly cloned Function Object Store as the source for the objects needed
for initialization. The resulting attributes are shown in Table 27.37.

Table 27.37: LoadCartState Attributes After Running the First magnitude Command

LoadCartState magnitude dot
FCS FOS Call

Stack FCS FOS Call
Stack FCS FOS Call

Stack
Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
>CallFunction
CallFunction

Clones
of:
Sat
clone
r
v
rv
vv

Original
FOS:
Sat
clone
r
v
rv
vv

Create
>Assignment

Clones
of:
'vec1'-
> clone
of vv
clone
val

Original
FOS:
'vec1'-
> clone
of vv
clone
val

>Create
Assignment

'vec1'-
> clone
of clone
of vv
clone
'vec2'-
> clone
of clone
of vv
clone

empty

The dot function can now be run. This execution is made by calling the Evaluate() method on the
FunctionRunner. In turn, the FunctionRunner executes the function. Fortunately, this function does not
call another. Upon completion of the execution of the dot function, the attributes have the values shown in
Table 27.38.

Table 27.38: LoadCartState Attributes After Evaluating the dot Function in the magnitude Function

Draft: Work in Progress
27.2. GMAT FUNCTIONS 295

LoadCartState magnitude dot
FCS FOS Call

Stack FCS FOS Call
Stack FCS FOS Call

Stack
Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
>CallFunction
CallFunction

Clones
of:
Sat
clone
r
v
rv
vv

Original
FOS:
Sat
clone
r
v
rv
vv

Create
>Assignment

Clones
of:
'vec1'-
> clone
of vv
clone
val

Original
FOS:
'vec1'-
> clone
of vv
clone
val

Create
Assignment

'vec1'-
> clone
of clone
of vv
clone
'vec2'-
> clone
of clone
of vv
clone
val

empty

At this point we can start unwinding the call stack. The Function Object Store for the dot function
includes a Variable, val, that has the scalar product of the vv Array with itself. Once the dot function has
completed execution, the FunctionManager retrieves this value, and saves it so that it can be passed to the
MathTree as the result of the Evaluate() call on the FunctionRunner node. The FunctionManger then �nal-
izes the dot function, clearing the Function Object Store pointer in the dot function. The FunctionRunner
then calls the controlling FunctionManager's PopFromStack() method, which deletes the cloned call stack
and restores the Function Object Store that was on the call stack. The MathTree completes its evaluation,
retrieving the values obtained from the dot function, and using that value to build the resultant needed by
the Assignment command that contains the MathTree. The attributes at this point are shown in Table 27.39.

Table 27.39: LoadCartState Attributes After Evaluating the magnitude Assignment Command

LoadCartState magnitude dot
FCS FOS Call

Stack FCS FOS Call
Stack FCS FOS Call

Stack
Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
>CallFunction
CallFunction

Clones
of:
Sat
clone
r
v
rv
vv

Original
FOS:
Sat
clone
r
v
rv
vv

Create
Assignment

'vec1'-
> clone
of vv
clone
val

empty Create
Assignment

NULL empty

The Assignment command that called into the dot function used the results of that function to set the
value of the val Variable in the magnitude function's Function Object Store. That Assignment command
was the last command in the magnitude function's Function Control Sequence, so the call to the magnitude
function made from the LoadCartState function has completed execution. The FunctionManager for the
LoadCartState function retrieves the output argument � in this case, the val Variable � from the magnitude
function. It then deletes the cloned function object store, pops the Function Object Store o� of the call stack,
locates the object set to contain the output � that is, the r Variable � in this Function Object Store, and
calls the assignment operator to set these two objects equal. That process is followed for all of the output
arguments in the function call, and then the FunctionManager clears the magnitude function, completing
the execution of the CallFunction command. These steps result in the attributes tabulated in Table 27.40.

Table 27.40: LoadCartState Attributes After Clearing the magnitude Function

Draft: Work in Progress
296 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

LoadCartState magnitude dot
FCS FOS Call

Stack FCS FOS Call
Stack FCS FOS Call

Stack
Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
>CallFunction

Sat
clone
r
v
rv
vv

empty Create
Assignment

NULL empty Create
Assignment

NULL empty

This process is repeated for the last CallFunction in the LoadCartState Function Control Sequence,
resulting in calls that set the value of the v Variable in the LoadCartState Function Object Store. Once this
�nal CallFunction has been evaluated, the FunctionManager in the Mission Control Sequence CallFunction
command that started this process � that is, the FunctionManager that is running the LoadCartState function
� retrieves the output objects, one at a time, and sets the objects in the Sandbox Object Map referenced
by the CallFunction command equal to the objects found in the LoadCartState Function Object Store
using the corresponding assignment operators. This completes the LoadCartState function execution, so the
CallFunction FunctionManager �nalizess the LoadCartState function, resulting in the attributes shown in
Table 27.41. The LoadCartState function is now ready for a new call, should one be encountered later in
the mission.

Table 27.41: Attributes after running the LoadCartState Function

LoadCartState magnitude dot
FCS FOS Call

Stack FCS FOS Call
Stack FCS FOS Call

Stack
Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

NULL empty Create
Assignment

NULL empty Create
Assignment

NULL empty

27.2.2.4 Finalization

The �nal step in running scripts that use GMAT functions is the cleanup after the function has been run. The
normal procedure followed in the Sandbox is to call RunComplete() on the Mission Control Sequence, which
gives each command the opportunity to reset itself for a subsequent run. The CallFunction and Assignment
commands that access GmatFunctions use this call to execute the RunComplete() method in the Function
Control Sequences contained in those functions.

The Sandbox Object Map and Global Object Store are left intact when GMAT �nishes a run. Subsequent
runs in GMAT start by clearing and reloading these object stores. The preservation of the �nal states of the
objects in the Sandbox makes it possible to query these objects for �nal state data after a run completes
execution.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 297

27.2.3 Global Data Handling: Another Short Example
In this section, we will examine another short sample to show how global data is managed in GMAT when
functions are present. The main script that drives this example is shown here:

Create ImpulsiveBurn globalBurn;
Create Spacecraft globalSat;
Create Variable index;

Create ForceModel fm
fm.PrimaryBodies = {Earth}
Create Propagator prop
prop.FM = fm

Create OpenGLPlot OGLPlot1;
GMAT OGLPlot1.Add = {globalSat, Earth};

Global globalBurn globalSat
Propagate prop(globalSat) {globalSat.Earth.Periapsis}
For index = 1 : 4

RaiseApogee(index);
Propagate prop(globalSat) {globalSat.Earth.Periapsis}

EndFor

The function called here, RaiseApogee, applies a maneuver to the spacecraft so that subsequent propa-
gation moves the spacecraft on di�erent trajectory. The function is de�ned like this:

function [] = RaiseApogee(burnSize)

Global globalBurn globalSat
globalBurn.Element1 = burnSize / 10.0;
Maneuver globalBurn(globalSat);

This function uses two objects that are not de�ned in the function, and that are also not passed in using
arguments to the function. These objects are placed in the Sandbox's Global Object Store. In the next few
pages we will examine this object repository during initialization, execution, and �nalization.

27.2.3.1 Globals During Initialization
At the start of initialization in the Sandbox, the Global Object Store is empty, the Sandbox Object Map
contains the objects from the Con�guration, and the Mission Control Sequence has been built from parsing
of the script. The state of the objects in the Sandbox immediately before the start of Mission Control
Sequence initialization is shown in Table 27.42.

Table 27.42: The Objects in the Globals Example at the Start of Initialization

Draft: Work in Progress
298 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Mission Objects RaiseApogee Function
Sandbox Object

Map
Global Object

Store
Mission
Control
Sequence

Function
Object Store

Global Object
Map

Function
Control
Sequence

globalBurn
globalSat
index
fm
prop
EarthMJ2000Eq
EarthMJ2000Ec
EarthFixed
OGLPlot1
RaiseApogee

empty Global
Propagate
For
CallFunction
Propagate
EndFor

NULL NULL empty

The �rst thing the Sandbox does after initializing the objects in the Sandbox Object Map is to collect
all objects in the Sandbox Object Store that are marked as globals via the isGlobal �ag, and moves those
objects into the Global Object Store. This includes the objects that are automatically set as global in scope.
Other objects are set as globals using a check box on the GUI, or using the �MakeGlobal� object property
in the script �le. For this example, neither case is met, so the only global objects are the automatic globals
� the Propagator and the Function found in the script, along with the three coordinate systems that GMAT
automatically creates. Table 27.43 shows the resulting rearrangement of objects. Note that the objects
marked by the Global command in the script are not put into the Global Object Store at this point. They
are moved when the Global command is executed.

Table 27.43: The Objects in the Globals Example after moving the Globals

Mission Objects RaiseApogee Function
Sandbox Object

Map
Global Object

Store
Mission
Control
Sequence

Function
Object Store

Global Object
Map

Function
Control
Sequence

globalBurn
globalSat
index
fm
OGLPlot1

prop
EarthMJ2000Eq
EarthMJ2000Ec
EarthFixed
RaiseApogee

Global
Propagate
For
CallFunction
Propagate
EndFor

NULL NULL empty

Note that the global objects have been moved from the Sandbox Object Map into the Global Object Store.
This feature � glossed over in the earlier discussion � makes memory management for the objects at the
Sandbox level simple. When the Sandbox is cleared, all of the objects in the Sandbox Object Map and the
Global Object Store are deleted.

This feature has implications for global objects created inside of functions as well. If an object created
inside of a function is declared global, either explicitly using a Global command or implicitly by virtue of
its type, the Create or Global command checks the Global Object Store to see if an object of that name
is already stored in it. If the object already exists in the Global Object Store, the types of the objects are
compared, and if they do not match, an exception is thrown. Additional discussion of the interplay between
the Create command and the Global command are provided in the design speci�cations for those commands.

Once the automatic globals have been moved into the Global Object Store, the Sandbox proceeds with
initialization of the commands in the Mission Control Sequence. This process follows the procedure described
in the preceding sections, so the results are summarized here, with details related to global objects discussed
more completely.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 299

The �rst command of interest in this discussion is the Global command. At construction, this command
was given the names of the global objects identi�ed for the command. These names are stored in the
command for use at execution time. No action is applied for this command during initialization.

The next command of interest is the CallFunction command. When the CallFunction command initializes,
the Global Object Store pointer is passed into the function contained in the CallFunction � in this case, the
RaiseApogee function. Then the solar system and transient force vector pointers are set in the function. The
function is then retrieved by the Sandbox, and passed to the ScriptInterpreter::InterpretGmatFunction()
method, which builds the Function Control Sequence. Upon return, the attributes are set as shown in
Table 27.44.

Table 27.44: The Objects in the Globals Example on return from InterpretGmatFunction

Mission Objects RaiseApogee Function
Sandbox Object

Map
Global Object

Store
Mission
Control
Sequence

Function
Object Store

Global Object
Map

Function
Control
Sequence

globalBurn
globalSat
index
fm
OGLPlot1

prop
EarthMJ2000Eq
EarthMJ2000Ec
EarthFixed
RaiseApogee

Global
Propagate
For
CallFunction
Propagate
EndFor

NULL set Global
Assignment
Maneuver

Like the Mission Control Sequence, the Function Control Sequence contains a Global command. The
names of the global objects identi�ed for this command are set in the InterpretGmatFunction() method
when the GmatFunction is parsed. Nothing else happens for the Global command during the initialization
that builds the Function Control Sequence.

The Sandbox continues initializing the commands in the Mission Control Sequence until they are all
initialized, completing the process.

27.2.3.2 Globals During Execution
Next we will examine the behavior of the Global commands during execution of the Mission Control Sequence.
The �rst command that is executed in the Mission Control Sequence is the Global command de�ned by the
line

Global globalBurn globalSat

in the Function Control Sequence. This command contains a list of the global objects, speci�ed as objects
named �globalBurn� and �globalSat�. When the Global::Execute() method is called, it takes this list and,
for each element in the list, performs these actions:

1. Check the command's object map (in this case the Sandbox Object Store) for the named object.

2. If the object was found:

(a) Check the Global Object Store for an object with the same name.
(b) If no such object was found, remove the object from the object map and set it in the Global

Object Store. Continue at step 4.
(c) If the object was found in the Global Object Store, throw an exception stating that an object was

found in the Global Object Store with the same name as one that was being added, and terminate
the run.

Draft: Work in Progress
300 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

3. The object is not in the object map, so the Global command needs to verify that it was set by another
process in the Global Object store. Looks for the object, and verify that it in the Global Object Store
and that its pointer is not NULL. If the pointer is NULL, throw an exception and terminate the run.

4. Get the next name from the list of global objects. If the list is �nished, exit, otherwise, return to step 1
to process the next global object.

The Global command in the Mission Control Sequence follows the process shown in step 2b, moving the
declared objects into the Global Object store, as shown in Table 27.45.

Table 27.45: The Objects in the Globals Example after Executing the Global Command in the Mission
Control Sequence

Mission Objects RaiseApogee Function
Sandbox Object

Map
Global Object

Store
Mission
Control
Sequence

Function
Object Store

Global Object
Map

Function
Control
Sequence

index
fm
OGLPlot1

prop
EarthMJ2000Eq
EarthMJ2000Ec
EarthFixed
RaiseApogee
globalBurn
globalSat

Global
Propagate
For
CallFunction
Propagate
EndFor

NULL set Global
Assignment
Maneuver

Execution of the Global command in the Mission Control Sequence simply veri�es that the global objects
are set as speci�ed.

27.2.4 Additional Notes and Comments
This section contains a few items that may need additional notes to fully explain the function design.

27.2.4.1 Search Order for Reference Objects
Previous builds of GMAT contain a single mapping for reference object names, the Sandbox Object Map.
The function subsystem design requires the addition of two new mappings between names and object pointer:
the Global Object Store and the Function Object Store.

In context, a command only has access to two of these three possible mappings. The Global Object Store
is visible to all commands. Commands that are part of the Mission Control Sequence also access the Sandbox
Object Map, while commands in a Function Control Sequence access the function's Function Object Store.
I'll refer to this second mapping � either the Sandbox Object Map or the Function Object Store, depending
on context � as the Local Object Store.

It is possible that objects in the Local Object Store have identical names to objects in the Global Object
Store. As an example, both the dot and cross functions described in the function example in this document
use local objects named vec1 and vec2. If one of these functions declared vec1 as a global object, a call to
execute that function would move the local vec1 object into the Global Object Store. A subsequent call to
the other function would result in a case where both the Local Object Store and the Global Object Store
contain an object named vec1, and the commands that use this object would need a rule that speci�es how
to resolve the referenced object between these two object mappings.

The general rule for resolving reference objects for this type of scenario is that local objects have prece-
dence over global objects. When reference object pointers are located prior to executing a command, the
Local Object Store is searched �rst for the named object. If the Local Object Store does not contain the

Draft: Work in Progress
27.2. GMAT FUNCTIONS 301

reference object, then the Global Object Store is used to resolve the reference. If the object is not found
there either, an exception is thrown stating that a referenced object � with a speci�ed name that is states
in the exception message � was not available for use by the command.

27.2.4.2 Identifying Global Objects using the isGlobal Flag
The GmatBase base class gains a new attribute as part of the function design. This attribute is a boolean
data member named isGlobal, which defaults to false in the base class. The isGlobal attribute can be
accessed using the Get/SetBooleanParameter methods through the script identi�er �MakeGlobal�. Thus, in
parameter mode, the following scripting:

Create Spacecraft Satellite
Satellite.MakeGlobal = true

speci�es that the Spacecraft named Satellite is a global object, and should be placed in the Global Object
Store when that mapping is populated � for example, as part of the global object mapping described in
Initialization Step 3 (see section 27.2.2.2).

The isGlobal �ag is used by GMAT's GUI to determine the state of the Global checkbox on resource
panels � if the isGlobal �ag is true, then a call to the GetBooleanParameter("MakeGlobal") method returns
true, and the box is checked. When a user changes the state of the checkbox, that change is passed to the
object using a call to the SetBooleanParameter(�MakeGlobal�, newValue) method.

In the Sandbox, the Global command moves local objects into the Global Object Store. When the
command moves an object, it also toggles the isGlobal �ag so that queries made to the object can identify
that the object is globally acessible. This state data can be used by the Create command to determine if an
object that it manages has been added to the Global Object Store, and therefore does not need to be resent
to an object map.

27.2.4.3 Function Object Management
Each GMAT function can de�ne input parameters and output parameters. Neither set is required. Functions
that omit a set of parameters also omit the brackets for the parameter, as is shown here:

function MyFunctionWithoutResultants(inputs)

here:

function [resultants] = MyFunctionWithoutInputs

and here:

function MyFunctionWithoutParameters

The input and output parameters, marked in the sample above with the names �inputs� and �resultants,�
respectively, consist of labels for data that is passed between the calling object and the function. Each of the
�elds indicated that way in the examples above consist of one or more actual parameters. When GMAT's
Script Interpreter encounters a function call, it creates either a CallFunction command or a FunctionRun-
ner object that encapsulates the function call. This object analyzes the parameters for the function and
stores them for use at runtime. During execution of the Mission Control Sequence, the CallFunction or
FunctionRunner passes an object associated with each parameter into a member FunctionManager object,
which in turn places the associated objects into the Function Object Store and them passes this store into
the GmatFunction object that manages the call.

Objects used inside of the GMAT function can be obtained from three sources, shown in Table 27.46.
The �rst source is the set of parameters de�ned in the function call � that is, the input and output variables.
These clones are made by locating the objects named in the parameter lists (either the Sandbox Object Map

Draft: Work in Progress
302 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Table 27.46: Object Maps used to Set References in Control Sequences
Object Map Contents Manager Source
Sandbox Object Map Clones of Con�gured

Objects
Sandbox Objects built from the Create

keyword, in object mode
Global Object Store Pointers to Global Ob-

jects
Sandbox Objects identi�ed as Globals

Function Object
Store

Input and Output pa-
rameters, and locally
created objects

CallFunction
or Function-
Runner

Clones of the parameters, or cre-
ated using the Create command

or the Global Object Store), making copies, and placing these copies in the Function Object Store. GMAT
provides a command, the Create command, that can be used to create local variables in a control sequence.
Variables created this way are also stored in the Function Object Store of the function, providing a second
supply of objects used in the function.

The �nal source is the Global Object Store, managed by the Sandbox and supplied at initialization to the
function. The Global Object Store contains every object that has been identi�ed as available for use in all
functions and sequences in the Sandbox. Objects are identi�ed as members of the Global Object Store using
the GMAT keyword �Global� in a script, or by checking the �global� checkbox on the object's con�guration
panel on the GUI. Coordinate Systems, Propagators, and Functions are automatically included in the Global
Object Store.

GmatFunctions can call other GmatFunctions, and can call themselves iteratively. This feature of the
class is implemented through a call stack incorporated into the GmatFunction class. When a GmatFunction
is executing, calls to a CallFunction or FunctionRunner in the Function Control Sequence are preceded by a
push of the Function Object Store onto the call stack. Once the called object completes execution, the call
stack pops the Function Object Store o� of the call stack and continues execution of the Function Control
Sequence.

27.2.4.4 The Function Control Sequence
Each GmatFunction object manages a list of commands called the Function Control Sequence. The Function
Control Sequence acts similarly to the Mission Control Sequence. It is a linked list of commands that de�nes
a sequential set of actions taken by GMAT to perform a user designed task. The FCS di�ers from the
Mission Control Sequence in several key ways: (1) it does not have direct access to the con�guration or to
the Sandbox's Object Map, (2) every object created for local use in the FCS is created at run time rather
than when the Mission Control Sequence is opened, and (3) the corresponding object linkages and validation
occur at build and run time.

GMAT parses the FCS for each function used in a script when the CallFunction command or Func-
tionRunner MathNode that calls the function is initialized in the Sandbox prior to a run. This function
parsing is idempotent � in other words, if a given function is parsed in a CallFunction command or in a
FunctionRunner, subsequent CallFunctions and FunctionRunners that access the same function do not force
a reparsing of the function �le.

The FCS is initialized when the CallFunction or FunctionRunner that calls the function is executed. At
that point, the Function Object Store for the FCS is constructed, passed to the commands in the FCS, and
used to initialize the commands in the FCS12.

Functions are executed through a call to the Execute() method on the FunctionManager that runs the
function for the calling control sequence. This process mimics the execution of the Mission Control Sequence,

12This late binding may prove to be prohibitively expensive for performance. If that turns out to be the case, we'll need to
move the command initialization from run time to build time.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 303

as run by either the Sandbox or (for nested calls) an enclosing CallFunction or FunctionRunner. The sequence
controlled by this caller is:

1. The CallFunction or FunctionRunner is prepared for execution:

• The current command pointer is set to the �rst command in the FCS.
• The FCS Function Object Store is built and passed into the FCS.
• The FCS is initialized.
• The commandExecuting �ag for the CallFunction or Assignment command containning the func-

tion call is set to true.
• The commandComplete �ag is set to false.

2. The caller calls the Execute() method on the CallFunction or Assignment command.

3. The CallFunction or FunctionRunner calls the Execute() method on the FunctionManager, which in
turn calls the Execute() method on the FCS command pointed to by the current command pointer.

4. Upon return, the FunctionManager advances the current command pointer by calling Next() on the
command that was just executed.

5. The FunctionManager returns control to the caller so that interrupt polling can occur.

6. The caller calls the CallFunction::Next() or Assignment::Next() method.

• If the current command pointer is NULL, the function has completed execution, and the next
pointer in the control sequence is returned.

• If the current command pointer is not NULL, the pointer to this command is returned.

7. The caller calls the Execute() method on the pointer returned from the call to Next().

• If that pointer is the pointer for this command, and execution through the function loop resumes
at step 3.

• If that pointer is neither the current command nor a NULL pointer, the command has completed
its work, and the calling control sequence proceeds to the next command in its list.

• If that pointer is NULL, the script has completed execution and control is returned to the user.

The interactions between the CallFunction and Assignment command and the GmatFunction object, as
enumerated here, are the focus of the design features presented in the following sections. Section 27.2.5
presents the class design for the GmatFunction class.

The CallFunction command is described in Section 27.5.1.
Details of the interplay between these component and the rest of GMAT are presented in Section 27.2.6.

Global object management is presented in the discussion of the Create and Global commands, in Sec-
tions 27.5.2 and 27.5.3, respectively.

27.2.5 Design
Figure 27.6 shows the Function class hierarchy, with the details relevant to the GmatFunction class explicitly
displayed. GmatFunction is derived from the Function base class, which, in turn, is a child of the GmatBase
root class. Using GmatBase as the root class for the function classes provides GMAT with all of the
infrastructure needed to con�gure and manipulate the function classes, including type identi�ers, names,
and standardized interfaces. More details about the GmatBase class can be found in Section 9.3.

Draft: Work in Progress
304 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Figure 27.6: Class diagram for the GmatFunction Class

27.2.5.1 GmatFunction Attributes
The GmatFunction class is the most complicated of the function classes. It provides mechanisms to manage
objects used in the function, provide storage for nested calls (including iteration), receive input and output
parameters and global objects, and manage the Function Control Sequence. The data attributes used for
these functions are itemized here:

• std::map<std::string, GmatBase*> objectStore: The GmatFunction's local object store.

• std::stack<std::map<std::string, GmatBase*� objectStack: The function stack used to sup-
port recursion and function nesting.

• std::map<std::string, GmatBase*> *globalStore: The global object store.

• GmatCommand *sequence: The Function Control Sequence (FCS).

• SolarSystem *solar: The SolarSystem instance used in the Sandbox, passed to the GmatFunction
for use in the FCS.

27.2.5.2 GmatFunction Methods
GmatFunctions include methods speci�c to the needs of the GmatFunctions, listed here:

• void SetSolarSystem(SolarSystem *ss): Sets the solar system used in the FCS.

• void SetGlobalObjectStore(std::map<std::string, GmatBase*> gos): Sets the global object
store pointer.

• bool SetRefObject(GmatBase *obj, const Gmat::ObjectType type, const std::string &name
= ""): Virtual method overridden from GmatBase. The Sandbox and CallFunction use this method to
set up the GmatFunction, passing in the input and output parameters and Function Control Sequence.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 305

• bool Initialize(): Method used to set up all of the inter-object connections and verify that all required
objects are available to run the FCS.

• bool ExecuteFunction(): Executes the FCS. This method is called to run the Function Control
Sequence.

• bool ExecuteCallFunction(): This method is called when a CallFunction is found in the FCS to
run the nested function.

The following paragraphs describe how these attributes and methods interact with the rest of GMAT to
provide the function implementation.

27.2.6 GmatFunction Details: Construction, Initialization, and Execution
Before a GmatFunction can be used, it must be constructed through interactions between the FunctionMan-
ager, GmatFunction instance, and Sandbox. Figure 27.7 shows the Sandbox's role in these interactions. The
�gure shows the process for a CallFunction; FunctionRunner initialization is similar.

Figure 27.7: CallFunction Initialization Details. The blue boxes show the path followed for all function
types. The orange and yellow blocks are speci�c to GmatFunctions. The yellow blocks are have additional
diagrams explaining how they work.

An overview of Sandbox initialization and execution is provided in Section 3.2.5, with additional details in
the chapter describing the Sandbox (Chapter 5). The steps shown in Figure 27.7 illustrate the steps taken to
initialize a CallFunction command. This command is used to execute any of the function types supported in
GMAT � GMAT functions, MATLAB functions, and internal functions � on a single line. Functions can also
be run using the FunctionRunner MathNode when they are called to generate input for inline mathematics.
Of the three Function types described here, GMAT functions alone require extensive interactions with the
other components of the GMAT engine and Interpreter subsystems. The �gure shows an overview of these
interactions in the orange and yellow boxes of the activity diagram.

The basic �ow through CallFunction and FunctionRunner initialization can be described in the following 5
steps:

Draft: Work in Progress
306 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

1. The Sandbox passes the Sandbox Object Map and the Global Object Store to the CallFunction or
FunctionRunner.

2. The CallFunction or FunctionRunner passes the Global Object Store to the Function Manager.

3. The Sandbox calls the Initialize() method on the CallFunction or FunctionRunner. It locates the
Function and the input and output parameters in the Sandbox Object Map or the Global Object
Store, and uses these objects to populate the Function Object Store in the FunctionManager.

4. The Sandbox checks to see if the function is a GmatFunction. If so, additional actions, described
below, are taken.

5. The CallFunction or FunctionRunner sets its initialized �ag to true, completing initialization.

The initialization procedure for GMAT functions includes the construction of the Function Control Se-
quence for the GmatCommand. Each FunctionManager begins the initialization process by checking to see
if the contained function is a GmatFunction. If it is, the FunctionMagnager reports this information to the
Sandbox through the containing CallFunction or FunctionRunner, which then retrieves the GmatFunction
pointer from the FunctionManager and performs the following actions:

1. The input and output parameter objects are cloned into the FunctionManager.

2. The FunctionManager passes the input and output parameters to the GmatFunction object.

3. The FunctionManager passes the Global Object Store to the GmatFunction object.

4. The Sandbox checks to see if the Function Control Sequence for the GmatFunction has been interpreted.
If not, it builds the Function Control Sequence using the Sandbox::InterpretSubsequence() method.
The steps taken to build the Function Control Sequence are shown in Figure 27.8 and explained below.

5. If the GmatFunction is not in the Global Object Store, it is added to it.

6. The FunctionManager initializes the Function Control Sequence, following the process shown in Fig-
ure 27.10 and described below.

27.2.6.1 Interpreting the Function Control Sequence
GMAT's Interpreter subsystem, described in Chapter 16, is responsible for reading the text �les containing
GMAT scripting. This responsibility includes the pieces necessary to interpret GMAT function �les. The
Interpreter base class has a public method,

GmatCommand *InterpretGmatFunction(GmatFunction *function);13

designed to access the GmatFunction �le and build the associated Function Control Sequence. Each time
the Sandbox encounters a CallFunction command during initialization that references a GmatFunction, the
Sandbox checks to see if the Function Control Sequence has been built. If the Function Control Sequence
needs to be built, the Initialize method calls the Sandbox's InterpretSubsequence() method to build it.

The Sandbox::InterpretSubsequence() method is shown in Figure 27.8. The method starts by building the
list of commands comprising the Function Control Sequence. This construnction is done by passing control
to the Moderator, which, in turn, passes the build request to an interpreter for processing. The interpreter
locates the function �le and parses its contents, setting global objects in the Global Object Store as needed
and building up the Function Control Sequence. Once the function �le has been parsed, the interpreter sets

13The current code has a function, GmatCommand* InterpretGmatFunction(const std::string &pathAndName), which is
mostly commented out but can be used as a starting point for the function described here. The method described here replaces
that method. See Chapter 16 for more details.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 307

Figure 27.8: Message Flow for Interpreting the Function Control Sequence

the Function Control Sequence pointer on the GmatFunction and returns the head of the sequence, through
the Moderator, to the Sandbox.

Once the Function Control Sequence has been built, the InterpretSubsequence() method checks the
returned sequence for CallFunction commands and FUnctionRunner nodes. For each CallFunction or Func-
tionRunner encountered, it checks to see if the object uses a GmatFunction, and if so, if the Function Control
Sequence for that GmatFunction has been built. If not, the method sets the needed data structures on the
nested object and GmatFunction, and then calls InterpretSubsequence() for the nested function. This process
continues until all of the GmatFunctions references in the Function Control Sequence have been built.

These steps are performed to prepare the GmatFunctions for initialization. The initialization steps are
described in the next few paragraphs.

27.2.6.2 Initializing the FunctionManager

Figure 27.9, discussed in detail in Section 5.2.2.1, shows the process followed by the Sandbox to initialize
a control sequence. This method, Sandbox::InitializeSequence(), provides the core work performed when
initializing any control sequence � either a Mission Control Sequence or a Function Control Sequence. As
part of the initialization process, the Sandbox method checks each command as it initializes it and performs
additional processing on the CallFunction commands and FunctionRunner nodes in the sequence. Each
of these objects acts as a container for a FunctionManager object, which performs the actual Function
initialization. These details are described here.

FunctionManager objects are used to run the code contained in the classes derived from the Function

Draft: Work in Progress
308 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Figure 27.9: Initialization of a Control Sequence in the Sandbox (Copied from Figure 5.1)

base class. There are three categories of Functions that the FunctionManager manages: internal functions,
GMAT functions that run a Function Control Sequence, and functions executed using an external system
like MATLAB. The initialization procedure for the FunctionManager object, shown in Figure 27.10, contains
branches speci�c to each of these function types.

The �rst branch tests to see if the FunctionManager references an internal function. Internal functions
are function objects instantiating classes derived from the InternalFunction class. GMAT's internal func-
tions take one or more input and output parameters. The FunctionManager completes initialization of the
InternalFunction objects by querying the function object for the name or names of these parameters and
setting the references to the associated objects for the InternalFunction instance.

Every function that is not an internal function is either a GMAT function or an external function. The
current build of GMAT has only one type of external function, the MatlabFunction. Future builds may
extend the external function hierarchy; when that happens, the same considerations as described here for
MATLAB functions will apply to the other external function classes. When the Sandbox determines that
the function referenced by the FunctionManager is an external function, it immediately moves to the next
command in the control sequence because external functions do not require any additional initialization.

The �nal function type is the most complex of the three categories: the GMAT function. The Function-
Managers that exercise GMAT functions need to build the local object stores for these functions, pass these
stores into the functions, and then initialize the function objects, including the contained Function Control
Sequences. This process is discussed in the following paragraphs.

Before a GMAT function can be executed, it must set all of the internal object pointers to access existing

Draft: Work in Progress
27.2. GMAT FUNCTIONS 309

Figure 27.10: Message Flow for Initializing in the FunctionManager

objects in the Global Object Store, as parameters in the function call, or locally created. Some of this
initialization cannot be performed until the Mission Control Sequence is executing. For that reason, the
object pointers used when running the mission are set in the FunctionManager::Execute() method during
the run.

During initialization, a preliminary pass is made through each Function Control Sequence to check that all
of the objects referenced in the Function Control Sequence have been de�ned. This ensures that the scripted
functions can access objects that they need in order to execute their control sequences. In other words, it
checks the necessary condition that the objects must exist, but it does not guarantee that everything needed
is of the correct type for successful execution. In particular, objects created using the Create command
have their names registered for use, but the objects themselves are not available for validation and use until
the Create command is executed during the run. Since these objects are not available, they cannot be
validated during initialization. However, since the names are available, GMAT can ensure that an object
of the speci�ed name is expected. Initialization capitalizes on this state of the object lists to ensure that
all of the needed objects are expected to exist, validating the Function Control Sequences based on these
conditions.

The FunctionManager builds the GmatFunction's Function Object Store by populating it with clones
of the objects associated with its input and output parameters. The resulting Function Object Store is a
mapping between object names and the associated object clones, stored in the FunctionManager member

std::map<std::string, GmatBase*> functionStore

The Function Object Store mapping is built during initialization and populated with the parameter names
and NULL pointers. Once the input and output parameters have �lled the Local Object Store, the Sandbox
Object Map and Global Object Store are checked for the associated objects, using the following procedure
for each input and output parameter:

• The GmatCommand looks for the object in the Function Object Store. If found, then:

1. The object is cloned.

Draft: Work in Progress
310 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

2. The pointer to the clone is set as the object reference in the Function Object Store.

• If a parameter is not found in the Function Object Store, the GmatCommand looks for the object in
the Global Object Store. If it is found there14:

1. If the Global Object Store reference is not NULL, the object is cloned and the pointer to the
clone is set as the object reference in the Function Object Store.

2. If the Global Object Store pointer is NULL, the Function Object Store pointer is left pointing to
NULL as well. The object clone will be made in the FunctionManager during execution.

• If the object is not in either the Function Object Store or the Global Object Store, the object has not
been de�ned, and an exception is thrown identifying the missing object.

Once the Function Object Store is built, the FunctionManager sends all of the necessary object pointers
to the GmatFunction. This process starts by passing the internal coordinate system pointer to the function.
This is followed by pointers to the Publisher, Solar System, and Function Object Store. The GmatFunction
clears the object references in the Function Control Sequence, and then passes these object pointers to the
control sequence. Finally, the FunctionManager initializes the Function Control Sequence, completing the
initialization process.

One �nal note on initialization is needed. The process performed here is iterative in nature. That means
that FunctionManager objects contained inside of a Function Control Sequence are initialized using these
same steps, and Function calls inside of GmatFunctions in those calls also follow this process, and so on until
all of the GmatFunctions used in the Mission Control Sequence have been initialized. After a GmatFunction
has been initialized once, it is not reinitialized by another FunctionManager. The function initialization
operates on the assumption that if the function has been initialized once, then it is ready for use during a
mission run. This initialization termination is necessary to prevent iterative calls of a function on itself from
recursing forever.

14The treatment of global objects when used as input or output parameters to GmatFunction objects may need to be modi�ed
once we have a working implementation. The current design calls for all input and output parameters to be passed into the
functions as clones. That means that the global objects, when passed into a function as an input or output parameter, is not
modi�ed inside of that function.

Draft: Work in Progress
27.2. GMAT FUNCTIONS 311

Figure 27.11: The Sequence Followed to Run a GmatFunction Command

27.2.6.3 Executing a GMAT Function

At the end of initialization, all of the objects used in the function that can be preset are set and ready for use.
Pointers to objects that are obtained from the Global Object Store might not be set yet, depending on their
status at initialization time. Locally created objects are not yet set; they are set when the corresponding
Create command is executed. Details about setting these �nal pointers are provided in the discussions of

Draft: Work in Progress
312 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

the Create and Global commands, Sections 27.5.2 and 27.5.3, respectively.
Execution for the Function Control Sequence, shown in Figure 27.11 is very similar to execution of the

Mission Control Sequence in the Sandbox. The process starts when the Mission Control Sequence prepares
to execute a CallFunction or FunctionRunner that uses a GmatFunction. The Sandbox checks �rst to see if
a user interrupt has occurred, following the process common to all commands as described in Section 5.2.3.
Once this initial check has been performed, GMAT is ready to prepare and execute the function.

Execution of a Function Control Sequence can be broken into two distinct pieces: the �nal piece of
initialization and the actual execution of the Function Control Sequence. These processes are managed
in the Sandbox through repeated calls to the CallFunction's Execute() method, or the the Assignment
command's Execute() method for FunctionRunner nodes. The process for the CallFunction calls di�ers in
detail from that for a FunctionRunner, and will be described �rst here. FunctionRunner details are similar,
and will be summarized following this discussion.

CallFunction Details For a CallFunction, each call to Execute() causes the CallFunction to run a portion
of the process needed to execute the function, as is described below, and then returns control to the Sandbox
so that it can perform interrupt processing. The Sandbox then calls the CallFunction's GetNext() method
to determine the next command that needs to execute. The CallFunction returns its pointer as long as
the Function Control Sequence is initializing or executing. Once the function has completed its task, the
CallCunction clears its commandExecuting �ag and returns the pointer to the next command in its control
sequence, completing the function execution.

When Execute() is called for a CallFunction that is not already running a Function Control Sequence, the
CallFunction accesses the GmatFunction that contains the Function Control Sequence and retrieves the head
of that control sequence. That node is stored in the CallFunction's FunctionManager's internal data and
used to set the pointer to the current command for the Function Control Sequence. The CallFunction then
�nalizes initialization of the Function Object Store by setting the input and output parameter pointers for
the current function call. This object store is then sent to the commands in the Function Control Sequence,
those commands �nalize their initialization, and, if everything is constructed successfully, the function is
ready for execution. If an error is encountered during this process, an exception is thrown reporting the
error and execution terminates. The CallFunction handles the thrown exception, adds its own information
to the error message so that the user can see information about both the error thrown in the function and
information about the CallFunction that encountered the error, and then throws the resulting exception in
turn for handling in the GMAT engine.

Once these steps have been performed, the CallFunction is ready to run the Function Control Sequence.
All of the linkages and cloning necessary for execution have been performed. Running the Function Control
Sequence follows the same process as is followed when running a branch inside of a BranchCommand. The
Sandbox calls the Execute() method on the CallFunction, which calls Execute on the FunctionManager. The
FunctionManager calls the Execute() method on the current command in the Function Command Sequence.
That command runs, and returns control to the FunctionManager, which returns control to the CallFunction
in turn. The CallFunction then returns control to the Sandbox. The Sandbox then calls GetNext() on the
CallFunction. The CallFunction uses the FunctionManager to call GetNext() on the current command in
the Function Control Sequence. That call returns with either a pointer to the next command in the Function
Control Sequence, a pointer to itself, or a NULL pointer. In either of the former two cases, the Function
Control Sequence has not completed execution, so the FunctionManager reports a valid next pointer, and the
CallFunction returns a pointer to itself to the Sandbox. If the current Function Control Sequence command
returns NULL, the FunctionManager reports this value to the CallFunction, informing it that the Function
Control Sequence has completed execution. The CallFunction has �nished running the Function Control
Sequence, so it clears its commandExecuting �ag, and returns its next pointer to the Sandbox so that the
Sandbox can run the next command in the Function Control Sequence.

The process followed to execute nested GmatFunctions proceeds identically to that described above,
except that the CallFunction containing the Function Control Sequence that has the nested CallFunction
plays the role of the Sandbox in the description above. The Execute() method on the outer CallFunction walks

Draft: Work in Progress
27.3. MATLAB FUNCTIONS 313

the inner CallFunction through the function initialization and execution following an identical procedure to
that described above.

FunctionRunner Di�erences The key di�erence in this process for a FunctionRunner node is in the
handling of interrupt processing. FunctionRunner nodes are part of a larger mathematical expression in
a MathTree. This makes interrupt processing impractical for functions called through a FunctionRunner.
Instead, the FunctionRunner runs the Function Control Sequence until it has completed execution, and
then obtains the return value from the function using the Evaluate() or MatrixEvaluate() method on the
FunctionManager to retrieve the results for the calculation.

27.2.7 Usage and Modi�cation
GMAT Functions behave similarly to the Sandbox. You are not likely to need to make changes to the
implementation of the GmatFunction class structure unless you are making similar changes to the Sandbox
itself. Similarly, you are not likely to need to do anything special to use the GmatFunction class. All of the
interfaces from the class are provided through the CallFunction command.

27.3 MATLAB Functions
27.3.1 Design
27.3.2 Usage and Modi�cation

27.4 Internal Functions
The speci�cations for internal functions is TBD.

27.4.1 Design
27.4.2 Usage and Modi�cation

27.5 Related Classes: Command Classes
27.5.1 Design for the CallFunction Command
27.5.2 Design for the Create Command
27.5.3 Design for the Global Command

27.6 Related Classes: Engine Components
The function classes interact with engine components in some very speci�c ways, as are described in Sec-
tions 27.2.6, 27.4.2, and 27.3.2. The Sandbox features speci�c to functions are described in Chapter 5. The
features added to the Interpreters and the Moderator can be found in their Chapters 16 and 4, respectively.

<These chapters are yet to be �lled in. I'll post their updates when they are ready.>

Draft: Work in Progress
314 CHAPTER 27. GMAT AND MATLAB FUNCTIONS

Draft: Work in Progress

Chapter 28

Adding New Objects to GMAT

Darrel J. Conway
Thinking Systems, Inc.

Chapter 6 provided an introduction to the GMAT Factory subsystem. This feature of the GMAT design
provides an interface that users can use to extend GMAT without impacting the core, con�guration managed,
code base. Any of the scriptable object types in the system can be extended using this feature; this set of
objects includes hardware elements, spacecraft, commands, calculated parameters, and any other named
GMAT objects. This chapter provides an introduction to that interface into the system.

28.1 Shared Libraries
28.2 Adding Classes to GMAT
28.2.1 Designing Your Class
This is a list of steps taken to construct the steepest descent solver.

• Create the class (.cpp and header, comment prologs, etc.).
• Add shells for the abstract methods.
• Fill in code for the shells.
• Add the object �le to the list of objects in the (base) make�le.
• Unit test if possible.
• Build the code and debug what can be accessed at this point.

28.2.2 Creating the Factory
This is a list of steps taken to incorporate the steepest descent solver.

• Create the factory (in this case I edited SolverFactory).
• Add constructor call to the appropriate �Create...� method.
• Add the new object type name to the �creatables� lists in the factory constructors.
• Build and �x any compile issues.
• Test to see if the object can be created from a script.

315

Draft: Work in Progress
316 CHAPTER 28. ADDING NEW OBJECTS TO GMAT

28.2.3 Bundling the Code
28.2.4 Registering with GMAT

28.3 An Extensive Example

Draft: Work in Progress

Part IV

Appendices

317

Draft: Work in Progress

Draft: Work in Progress

Appendix A

Uni�ed Modeling Language (UML)
Diagram Notation

Darrel J. Conway
Thinking Systems, Inc.

This appendix presents an overview of the Uni�ed Modeling Language diagrams used throughout the
text, including mention of non-standard notations in the presentation. A more thorough presentation is
given in [fowler].

The presentation made here uses UML to sketch out how GMAT implements speci�c components of the
architecture. What that means is that the UML diagrams in the text do not necessarily present the full
implementation details for a given system component.

All of the UML diagrams in this document were drawn using Poseidon for UML, Professional edition
[poseidon]. The compressed UML �les for these diagrams are con�guration managed in a repository at
Thinking Systems' home o�ce.

A.1 Package Diagrams
Package diagrams are used to present an overview of a collection of objects, ranging from the top level parts
of an entire system to subelements of subsystems. Figure A.1 shows an example of a package diagram. In
this �gure, four primary GMAT system subsystems are shown: the Executive subsystem, the Interfaces, the
Factory subsystem, and the model elements.

Each box on the diagram represents a group of one or more classes that perform a task being discussed.
Package diagrams may include both package boxes and class boxes. The packages are represented by a box
with a tab on the upper left corner; classes are represented by boxes which may be subdivided into three
regions, as described in the Class Diagram section. Packages can be further divided into constituent elements,
either subpackages within a given package, or classes in the package. For example, in the �gure, the interface
package consists of an External Interface package and a User Interface package. The User Interface package
is further broken into three classes: the Interpreter base class and the ScriptInterpreter and GuiInterpreter
derived classes.

Sometimes important interactions are included in the Package diagram. When this happens, the interac-
tion is drawn as a dashed arrow connecting two elements on the diagram, and the nature of the interaction
is labeled. In the example, the relationship between the Factory package and the Model Element package is
included: Factories are used to construct model elements.

In this document, package diagrams are used to communicate design structure. The packages shown
in the �gures do not explicitly specify namespaces used in the GMAT code, even though UML does allow

319

Draft: Work in Progress
320 APPENDIX A. UNIFIED MODELING LANGUAGE (UML) DIAGRAM NOTATION

Figure A.1: GMAT Packaging, Showing Some Subpackaging

that use for package diagrams. When a package documented here has implications for a namespace used in
GMAT, that implication will be explicitly presented in the accompanying text.

A.2 Class Diagrams
Figure A.2 shows a typical class diagram for this document. This �gure is an early version of the class
diagram for the solver subsystem. The classes directly used in that subsystem are colored di�erently from
the related base classes � in this �gure, the Solver classes have a yellow background, while the base classes
are blue. Each box on the diagram denotes a separate class; in this example, the classes are GmatBase,
Solver, Optimizer, SteepestDescent, SequentialQuadratic, Di�erentialCorrector, Factory, and SolverFactory.
Abstract classes are denoted by italicizing the class name; here the classes GmatBase, Solver, Optimizer,
and Factory are all abstract because they contain pure virtual methods.

The box representing the class is broken into three pieces. The top section indicates the name of the
class. The center section lists the attributes (i.e. data members) of the class, and the bottom section stores
the operations (aka methods) available for the class. Attributes and operations are prefaced by a symbol
indicating the accessibility of the class member; a `+' pre�x indicates that the member is publicly accessible,
`#' indicates protected access, and `-' indicates private access. Static members of the classes are underlined,

Draft: Work in Progress
A.3. SEQUENCE DIAGRAMS 321

Figure A.2: Solver Classes

and singleton classes receive a <<Singleton>> designation above the class name.

The class diagrams included in this document suppress the argument list for the methods. This is done
for brevity's sake; the model �les include the argument lists, as does the code itself, of course. When a
method requires arguments, that requirement is indicated by ellipses on the diagram.

Classes are connected to one another using lines with arrows. If the arrowhead for the line is a three-sided
triangle, the line indicates inheritance, with the line pointing from the derived class to its base. For example,
in the �gure, SolverFactory is derived from the Factory base class. SolverFactory is not abstract, and can
be instantiated, but Factory is an abstract class as represented in this �gure (the class name is italicized),
even though the �gure does not explicitly provide a reason for the class to be abstract.

Lines terminated by an open arrowhead, like the line connecting SolverFactory to the Solver base class,
indicates an association. The arrow points in the direction that the association is applied � in this case, the
SolverFactory creates instances of Solvers. The decorations at the ends of these lines indicates multiplicity.
An asterisk indicates 0 or more, so for this example, a SolverFactory can create 0 or more Solvers, depending
on the needs of the program during execution.

Draft: Work in Progress
322 APPENDIX A. UNIFIED MODELING LANGUAGE (UML) DIAGRAM NOTATION

Figure A.3: A Sequence Diagram

A.3 Sequence Diagrams
Sequence Diagrams are used to indicate the sequence of events followed when performing a task. The task
shown in Figure A.3 is the creation of an instance of the Spacecraft class from the ScriptInterpreter. Sequence
diagrams are used in this document to illustrate a time ordered sequence of interactions taken in the GMAT
code. In this example, the interactions between the ScriptInterpreter and the other elements of GMAT are
shown when a "Create Spacecraft..." line of script is parsed to create a Spacecraft object.

Each of the players in the illustrated action receive a separate timeline on the �gure, referred to as a
�lifeline�. Time �ows from top to bottom. The player is described in the label at the top of the lifeline. In
the example shown here, each player is a method call on a core GMAT object � for example, the line labeled
CreateSpacecraft:Moderator represents the Moderator::CreateSpacecraft(...) method. Sequence diagrams in
this document can also use lifelines to for larger entities � for instance, the sequence diagram that illustrates
the interaction between the GUI, Con�gManager, Moderator, Sandbox, and mission components when a
mission is run, Figure 3.16. The vertical blocks on each lifeline indicate the periods in which the lifeline is
active, either because it is being executed, or because it is waiting for a called method to return.

Blocks are nested to indicate when a function is called inside of another. In the example, the Con�gMan-
ager::AddObject(...) call is nested inside of the Moderator::CreateSpacecraft(...) call because that inner call
is performed before control returns from the Moderator function. Arrows from one lifeline to another are
used to indicate the action that is being performed � in the example, line 4 shows when the newly created
Spacecraft is handed to the Con�g manager. (Note that this is a bit more verbose than in the UML standard;
the standard is to just list the method that is called, while I prefer to give a bit more description of the
invoked operation.)

Iteration can be indicated on these diagrams by enclosing the iterated piece in a comment frame. Similarly,
recursion is indicated by a control line that loops back to the calling timeline. When this type of action occurs,
a note is also included on the �gure to indicate how the recursion or self reference gets resolved; an example
can be seen in Figure 26.6. (These notes are called "Interaction Frames" in the UML documentation.)

A.4 Activity Diagrams
Activity Diagrams are used to illustrate the work �ow for a given task, particularly when the steps taken in
the task can occur in parallel, and when the order of these steps is not necessarily �xed. An example of this
type of diagram is shown in Figure A.4. This diagram, which is a subset of the activity diagram shown in

Draft: Work in Progress
A.4. ACTIVITY DIAGRAMS 323

Figure A.4: An Activity Diagram

Figure 26.8, shows the actions that occur when an equation is evaluated in a MathTree object.
Action starts at the black circle, in this case in the upper left of the �gure, and follows the arrows through

the blocks on the �gure, terminating when it reaches the other circular marker, a �lled circle with a concentric
circle around it. Each rounded block in the diagram represents a step in the task, referred to as an activity
in the UML documentation. These blocks include text indicating the activity to be accomplished.

Diamond shaped markers are used to indicate splits in the control �ow through the diagram. There
are two types markers used for this purpose: branches, which have a single input with multiple exits,
and merges, which bring together multiple paths to a single output. Text labels are placed on the branch
markers indicating the test that is performed for the branching. Labels on each branch indicate which path is
followed based on the test. For example, in the �gure, the branch point labeled �Has child nodes?� proceeds
downwards if the current node has child nodes, and to the right if the current node does not have child
nodes.

Activity diagrams also have fork nodes, which are displayed as heavy, black horizontal line segments.
Fork nodes are used to split the work �ow into parallel paths that are all executed. The example in the
�gure shows the evaluation of the subnodes nodes of a MathNode object. Each MathNode operator can have
a left subnode and a right subnode. These subnodes must be evaluated before the operator can execute, but

Draft: Work in Progress
324 APPENDIX A. UNIFIED MODELING LANGUAGE (UML) DIAGRAM NOTATION

it does not matter which subnode is evaluated �rst, as long as the results of both are available when the
operator is applied. The diagram indicates this behavior by forking the process into parallel paths, and then
showing the process logic for each of these paths. When both lines of execution complete, the work �ow
comes back together into a single execution path. This merging of the control paths is shown by a second
heavy black line segment, called a Join Node in the UML speci�cations.

A.5 State Diagrams

Figure A.5: A State Diagram

State diagrams are similar in format to activity diagrams. The start and end nodes are marked the same
way as in an activity diagram, and the program �ow is shown using similar transition arrows. The di�erences
lie in the objects represented by the diagram, and interpretation of the �gure. Activity diagrams are used to
illustrate the interactions amongst various objects that collectively perform a task. State diagrams are used
to model how a speci�c component evolves over time.

In this model of the component being described, that component is always modeled as being in a speci�c
system state, and transitioning from that state to another state based on changes in the system. The Solvers
in GMAT are implemented explicitly as �nite state machines, so they provide a prime example for this type
of diagram; the �nite state machine for a di�erential corrector object is shown in Figure A.5.

Each block in a state diagram represents one of the states available for the object. These blocks are divided
into two sections. The upper portion of the block provides a label for the state. The lower portion of the block
provides information about the process executed within that block � in this case, the method called on the
object � and may also provide information about the outcome of that process. For the di�erential corrector
shown here, the states are Initializing, Nominal, CheckingRun, Perturbing, Calculating, and Finished. Each
of these states includes the descriptor for the function called when the state machine is executed.

The arrows connecting the blocks in this �gure show the allowed state transitions. Each arrow is labeled
with the check that is made to ensure that it is time to make the corresponding transition.

Draft: Work in Progress

Appendix B

Design Patterms Used in GMAT

Darrel J. Conway
Thinking Systems, Inc.

The GMAT design was in�uenced by many di�erent sources: prior experience with Swingby, Navigator,
FreeFlyer, and Astrogator, exposure to analysis and operational systems for Indostar, Clementine, WIND,
ACE, and SOHO, and design experiences on other software projects. Part of the theoretical background for
the GMAT design comes from exposure to the object oriented design community, captured in the writings
of Scott Meyers, Herb Sutter, Bruce Eckel, Martin Fowler, and the Gang of Four[GoF].

This latter reference provides a framework for describing recurrent patterns in software systems. Patterns
that are used by reference in this document are summarized here for completeness; avid readers will also
want to read the Gang of Four text or a similar book derived from it.

B.1 The Singleton Pattern
B.1.1 Motivation
Some of the components of GMAT require implementation such that one and only one instance of the
component exist. Examples of these components are the Moderator, the ScriptInterpreter, the Publisher,
the Con�gurationManager, and the FactoryManager. These objects are implemented using the Singleton
design pattern.

Figure B.1: Structure of a Singleton

325

Draft: Work in Progress
326 APPENDIX B. DESIGN PATTERMS USED IN GMAT

B.1.2 Implementation
Figure B.1 shows the key elements of a singleton. The class is de�ned so that there is only one possible
instance during the program's execution. This instance is embodied in a private static pointer to a class
instance; in the �gure, this pointer is the �theSingleton� member. This pointer is initialized to NULL, and
set the �rst time the singleton is accessed.

The class constructor, copy constructor, assignment operator, and destructor are all private in scope.
The copy constructor and assignment operator are often declared but not implemented, since they cannot
be used in practice for singleton objects. All access to the Singleton is made through the Instance() method.

The �rst time Instance() is called, the pointer to the singleton is constructed. Subsequent calls to
Instance() simply return the static pointer that was set on the �rst call. A sample implementation of the
Instance() method is shown here:

Singleton* Instance()
{

if (theSingleton == NULL)
theSingleton = new Singleton();

return theSingleton;
}

B.1.3 Notes
In GMAT, the Singletons are all terminal nodes in the class hierarchy. Some designs allow subclassing of
Singletons so that the �nal singleton type can be selected at run time. GMAT does not subclass its singletons
at this time.

B.2 The Factory Pattern
B.2.1 Motivation
The Factory design pattern � sometimes called the Factory Method, de�nes an interface for creating objects,
and uses that interface in subclasses to create objects os speci�c types. GMAT uses this pattern for user
created objects. The Factory base class speci�es the creation interfaces into GMAT's factories. Derived
factory classes override the interfaces speci�c to the type of factory that is being implemented.

B.2.2 Implementation
The factory classes as implemented in GMAT are discussed, with sample code, in Section 6.2.2. Please refer
to that section for implementation details.

B.3 The Observer Pattern

B.4 The Mediator Pattern
B.4.1 Motivation
The Mediator design pattern centralizes the communications between objects into a single component. This
consolidation of the communications simpli�es the interfaces that the mediator's clients need to support,
and helps decouple the objects from one another. Additionally, the interfaces can be made more consistent
by keeping the Mediator interfaces consistent.

Draft: Work in Progress
B.5. THE ADAPTER PATTERN 327

B.4.2 Implementation
GMAT uses the Mediator pattern in the engine code. The Moderator is the mediator for GMAT's engine.
Details of the implementation for the Moderator are in Chapter 4.

B.4.3 Notes
The colmmon terminology in the literature refers to the mediator as the core class for the Mediator pattern,
and calls the classes that are mediated �Colleagues.� For the GMAT engine, the Mediator is the Moderator,
and the Colleagues are the Factory Manager, the Con�guration Manager, and the Sandboxes.

B.5 The Adapter Pattern
GMAT uses adapters to simplify invocation of calculations on di�erent types of objects, making the interface
identical even though the underlying classes are quite di�erent. One example of the use of adapters in GMAT
is the ElementWrapper classes used by the command subsystem. Many of the commands in GMAT need a
source of Real data in order to function correctly. This data can be supplied as a number, an object property,
a GMAT Parameter, an Array element, or any other source of Real data in the system. ElementWrappers
encapsulate the disparate interfaces to these objects so that the commands can use a single call to obtain
the Real data, regardless of the underlying object.

B.6 The Model-View-Controller (MVC) Pattern

Draft: Work in Progress
328 APPENDIX B. DESIGN PATTERMS USED IN GMAT

Draft: Work in Progress

Appendix C

Command Implementation: Sample
Code

Darrel J. Conway
Thinking Systems, Inc.

The wrapper classes described in Chapter 23 encapsulate the data used by commands that need informa-
tion at the single data element level, giving several disparate types a common interface used during operation
in the GMAT Sandbox. This appendix provides sample code for the usage of these wrappers, starting with
sample setup code, and proceeding through initialization, execution, and �nalization. The Vary command,
used by the Solvers, is used to demonstrate these steps.

C.1 Sample Usage: The Maneuver Command
Maneuver commands are used to apply impulsive velocity changes to a spacecraft. They take the form

Maneuver burn1(sat1)

where burn1 is an ImpulsiveBurn object specifying the components of the velocity change and sat1 is the
spacecraft that receives the velocity change. The Maneuver command overrides InterpretAction using the
following code:

//--
// bool InterpretAction()
//--
/**
* Parses the command string and builds the corresponding command structures.
*
* The Maneuver command has the following syntax:
*
* Maneuver burn1(sat1);
*
* where burn1 is an ImpulsiveBurn used to perform the maneuver, and sat1 is the
* name of the spacecraft that is maneuvered. This method breaks the script
* line into the corresponding pieces, and stores the name of the ImpulsiveBurn
* and the Spacecraft so they can be set to point to the correct objects during
* initialization.

329

Draft: Work in Progress
330 APPENDIX C. COMMAND IMPLEMENTATION: SAMPLE CODE

*/
//--
bool Maneuver::InterpretAction()
{

StringArray chunks = InterpretPreface();

// Find and set the burn object name ...
StringArray currentChunks = parser.Decompose(chunks[1], "()", false);
SetStringParameter(burnNameID, currentChunks[0]);

// ... and the spacecraft that is maneuvered
currentChunks = parser.SeparateBrackets(currentChunks[1], "()", ", ");
SetStringParameter(satNameID, currentChunks[0]);

return true;
}

The maneuver command works with GMAT objects � speci�cally ImpulsiveBurn objects and Spacecraft � but
does not require the usage of the data wrapper classes. The next example, the Vary command, demonstrates
usage of the data wrapper classes to set numeric values.

C.2 Sample Usage: The Vary Command
The Vary command has a much more complicated syntax than does the Maneuver command. Vary commands
take the form

Vary myDC(Burn1.V = 0.5, {Pert = 0.0001, MaxStep = 0.05, Lower = 0.0, ...
Upper = 3.14159, AdditiveScaleFactor = 1.5, MultiplicativeScaleFactor = 0.5);

The resulting InterpretAction method is a bit more complicated:

//--
// void Vary::InterpretAction()
//--
/**
* Parses the command string and builds the corresponding command structures.
*
* The Vary command has the following syntax:
*
* Vary myDC(Burn1.V = 0.5, {Pert = 0.0001, MaxStep = 0.05, ...
* Lower = 0.0, Upper = 3.14159);
*
* where
*
* 1. myDC is a Solver used to Vary a set of variables to achieve the
* corresponding goals,
* 2. Burn1.V is the parameter that is varied, and
* 3. The settings in the braces specify features about how the variable can
* be changed.
*
* This method breaks the script line into the corresponding pieces, and stores
* the name of the Solver so it can be set to point to the correct object

Draft: Work in Progress
C.2. SAMPLE USAGE: THE VARY COMMAND 331

* during initialization.
*/

//--
bool Vary::InterpretAction()
{

// Clean out any old data
wrapperObjectNames.clear();
ClearWrappers();

StringArray chunks = InterpretPreface();

// Find and set solver object name --the only setting in Vary not in a wrapper
StringArray currentChunks = parser.Decompose(chunks[1], "()", false);
SetStringParameter(SOLVER_NAME, currentChunks[0]);

// The remaining text in the instruction is the variable definition and
// parameters, all contained in currentChunks[1]. Deal with those next.
currentChunks = parser.SeparateBrackets(currentChunks[1], "()", ", ");

// First chunk is the variable and initial value
std::string lhs, rhs;
if (!SeparateEquals(currentChunks[0], lhs, rhs))

// Variable takes default initial value
rhs = "0.0";

variableName = lhs;
variableId = -1;

variableValueString = rhs;
initialValueName = rhs;

// Now deal with the settable parameters
currentChunks = parser.SeparateBrackets(currentChunks[1], "{}", ", ");

for (StringArray::iterator i = currentChunks.begin();
i != currentChunks.end(); ++i)

{
SeparateEquals(*i, lhs, rhs);
if (IsSettable(lhs))

SetStringParameter(lhs, rhs);
else

throw CommandException("Setting \"" + lhs +
"\" is missing a value required for a " + typeName +
" command.\nSee the line \"" + generatingString +"\"\n");

}

MessageInterface::ShowMessage("InterpretAction succeeded!\n");
return true;

}

Draft: Work in Progress
332 APPENDIX C. COMMAND IMPLEMENTATION: SAMPLE CODE

Draft: Work in Progress

Appendix D

GMAT Software Development Tools

Darrel J. Conway
Thinking Systems, Inc.

GMAT is a cross-platform mission analysis tool under development at Goddard Space Flight Center and
Thinking Systems, Inc. The tool is being developed using open source principles, with initial implementations
provided that run on 32-bit Windows XP, Linux, and the Macintosh (OS X). This appendix describes the
build environment used by the development team on each of these platforms.

The GMAT code is written using ANSI-standard C++, with a user interface developed using the wxWin-
dows toolkit available from http://www.wxwidgets.org. Any compiler supporting these standards should
work with the GMAT code base. The purpose of this document is to describe the tools that were actually
used in the development process.

Source code control is maintained using the Concurrent Versions System (CVS 1.11) running on a server
at Goddard. Issues, bugs, and enhancements are tracked using Bugzilla 2.20 running on a server at Goddard.

D.1 Windows Build Environment
• Compiler: gcc version 3.4.2 (mingw special)

• IDE Tool: Eclipse 3.1.1, with CDT 3.0.1 plug-in

• wxWindows Version: wxMSW 2.6.2

On Windows, GMAT has also been built using the Dev-C++ environment.

D.2 Macintosh Build Environment
• Compiler: gcc 4.0.1, XCode v. 2.2

• IDE Tool: Eclipse 3.1.2, with CDT 3.0.1 plug-in

• wxWindows Version: wxMac 2.6.2

D.3 Linux Build Environment
GMAT is regularly built on two di�erent Linux machines at Thinking Systems, one running Mandriva Linux,
and the second running Ubuntu Linux. Both build environments are listed here.

333

Draft: Work in Progress
334 APPENDIX D. GMAT SOFTWARE DEVELOPMENT TOOLS

On Mandriva 2006

• Compiler: gcc version 4.0.1 (4.0.1-5mdk for Mandriva Linux release 2006.0)

• IDE Tool: Eclipse 3.1.1, with CDT 3.0.1 plug-in

• wxWindows Version: wxGTK 2.6.2

On Ubuntu 5.10, Breezy Badger

• Compiler: gcc version 4.0.2 20050808 (prerelease) (Ubuntu 4.0.1-4ubuntu9)

• IDE Tool: Eclipse 3.1.2, with CDT 3.0.2 plug-in

• wxWindows Version: wxGTK 2.6.2

Draft: Work in Progress

Appendix E

De�nitions and Acronyms

E.1 De�nitions
ad A UML Activity Diagram. For diagrams generated in Poseidon, this label appears in the diagram's title

box, located at the top left corner of the diagram.

Application The GMAT executable program.

cd A UML Class Diagram. For diagrams generated in Poseidon, this label appears in the diagram's title
box, located at the top left corner of the diagram.

Command One step in the Mission Control Sequence.

Control Sequence Either a Mission Control Sequence or a Function Control Sequence.

Engine The �guts� of GMAT, consisting of all of the classes, control structures, objects, and other elements
necessary to run a mission.

Factory or Factories Components used to create pieces that users use when modeling a mission.

Function Control Sequence The time ordered steps taken in a GMAT function.

GMAT General Mission Analysis Tool.

Graphical User Interface The graphical front end for GMAT, built using the wxWidgets toolkit. GMAT
can also be built as a console application, but most users work from the GUI.

GUI The Graphical User Interface.

Interface The connection between GMAT and external systems, like MATLAB.

Interpreter The connection point between users and the Application. GMAT uses a ScriptInterpreter when
constructing a mission from a script �le, and a GuiInterpreter when con�guring from the GUI.

Mission All of the elements con�gured by the user to solve a speci�c problem. Every element of a GMAT
Mission is contained in the Model, but the Model may include components that are not part of a
speci�c Mission.

Mission Control Sequence The time ordered steps taken to run a mission.

Model All of the elements con�gured by a user in the GMAT Application.

Moderator The central control point in the Engine.

335

Draft: Work in Progress
336 APPENDIX E. DEFINITIONS AND ACRONYMS

Parameter A value or other property calculated outside of a GMAT object. Parameters as used in this
context are all elements derived from the Parameter base class, as described in Chapter 19.

Property A data member of a Resource or Command. Properties are the internal data associated with the
objects used in a GMAT model.

Resource An element of the GMAT model that represents an object used when running the Mission Control
Sequence.

Sandbox The portion of GMAT used to run a mission.

Script A text �le that contains all of the instructions required to con�gure a mission in GMAT.

sd A UML Sequence Diagram. For diagrams generated in Poseidon, this label appears in the diagram's title
box, located at the top left corner of the diagram.

sm A UML State Diagram. For diagrams generated in Poseidon, this label appears in the diagram's title
box, located at the top left corner of the diagram.

E.2 Acronyms
GMAT General Mission Analysis Tool

GSFC Goddard Space Flight Center

Draft: Work in Progress

Bibliography

[conway] Darrel J.Conway, �The GMAT Design Philosophy�, Internal Communications between Thinking
Systems and Goddard, May 9, 2004.

[doxygen] Dimitri van Heesch, Doxygen, available from www.doxygen.org.

[fowler] Martin Fowler, UML Distilled, 3rd Edition, Addison-Wesley, 2004.

[GoF] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[MathSpec] Steven P. Hughes, �General Mission Analysis Tool (GMAT) Mathematical Speci�cations.�

[UsersGuide] Steven P. Hughes, �General Mission Analysis Tool (GMAT) User's Guide.�

[matlab] The MathWorks, Inc, �MATLAB�, available from http://www.mathworks.com.

[opttools] The MathWorks, Inc, �Optimization Toolbox�, available from http://www.mathworks.com.

[poseidon] Gentleware AG, �Poseidon for UML, Professional Edition�, http://gentleware.com/, 2005.

[NRecipes] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical
Recipes in C, 2nd Edition, Cambridge University Press, 1992.

[schildt] Herbert Schildt, C++: The Complete Reference, 4th Edition, McGraw-Hill/Osborne, 2003.

[shoan] Wendy C. Shoan and Linda O. Jun, �GMAT C++ Style Guide.�

[smart] Julian Smart, Kevin Hock and Stefan Csomor, Cross-Platform GUI Programming with
wxWidgets, Prentice Hall, 2006.

[vallado] D. Vallado, Fundamentals of Astrodynamics and Applications, 2nd Ed., Microcosm Press,
2001.

[wx] wxWidgets Cross Platform GUI Library, available from http://wxWidgets.org.

337

Draft: Work in Progress

Index

.gmf Files, 257
Assignment, 191
Backwards Propagation, 192
Propagation Mode, 192

Data Wrappers, see Wrappers
Design Patterns

Singleton, 14

Engine, 13
Executive Components, 13
Factories, 13
The Con�guration, 13

Factory
Overview, 13

FCS, see Function Control Sequence
Function Control Sequence, 302

GMAT Functions, 257

Interfaces, 11
External Interfaces, 11
Program Interfaces, 11
Subscribers, 11

Interpreters
Overview, 11

Model, 13
Commands, 14, 22
Environment, 14
Parameters, 14
Resources, 14, 18
Running, 31
Scripts, 29

Packages, 9

Singleton, 14
Startup, 17
Subscribers, 11

Utilities, 14

Wrappers, 186
Example, 329

338

	Preface
	I System Architecture Overview
	Introduction
	The Tool
	Design Criteria
	MATLAB Accessibility
	User Extensibility
	Formation Modeling
	Parallel Processing Capabilities
	Open Source Availability

	Design Approach
	Modularity
	Loose Coupling
	Late Binding
	Generic Access

	Document Structure and Notations

	The GMAT Design Approach
	Approach to Meeting Requirements
	GMAT's Design Philosophy
	Extendability Considerations
	Platform Considerations

	System Architecture Overview
	The GMAT System Framework
	Package and Subpackage Descriptions
	Package Component Interactions

	GMAT Workflow Overview
	The GMAT Startup Process
	Configuring Resources
	Configuring Commands
	Model and Mission Persistence: Script Files
	Running a Mission

	Summary

	II Engine Components
	The Moderator
	Moderator Design Principles
	Moderator Responsibilities
	The Mediator Pattern Employed in the Moderator

	Moderator Design
	Class Details

	Usage and Modification

	The Sandbox
	Design Principles
	Sandbox Responsibilities

	Design
	Class Details
	The Late Binding Strategy
	Interrupt Polling During a Run

	Usage and Modification

	The Factory Manager
	Design Principles
	Factory Manager Responsibilities
	The Abstract Factory Pattern, Factory Subclasses, and the Factory Manager

	Design
	Class Details
	Design of the Factory Classes

	Usage and Modification

	The Configuration Manager
	Design Principles
	Configuration Manager Responsibilities

	Design
	Class Details

	Usage and Modification

	The Publisher
	Design Principles
	Publisher Responsibilities

	Design
	Class Details

	Usage and Modification

	III Model Components
	The GmatBase Class, Constants, and Defined Types
	Defined Data Types
	Error Handling in GMAT
	GmatBase
	GmatBase Attributes and Methods
	Setting GmatBase Properties
	Serializing GmatBase Objects
	GmatBase Derivatives

	Namespaces
	Enumerations
	The ParameterType Enumeration
	The WrapperDataType Enumeration
	The ObjectType Enumeration
	The RunState Enumeration

	Utility Classes and Helper Functions
	The MessageInterface
	Exception Classes
	Mathematical Utilities
	The Rvector and Rmatrix Classes
	Interpolators

	The GmatStringUtil Namespace

	The Space Environment
	Components of the Model
	The SpacePoint Class
	The Solar System Elements
	The SolarSystem Class
	The CelestialBody Class Hierarchy

	The PlanetaryEphem Class

	Coordinate Systems
	Introduction
	Coordinate System Classes
	The CoordinateSystem Class
	The AxisSystem Class Hierarchy
	CoordinateSystem and AxisSystem Collaboration
	The SpacePoint Class

	Configuring Coordinate Systems
	Scripting a Coordinate System
	Default Coordinate Systems

	Coordinate System Integration
	General Considerations
	Creation and Configuration
	Sandbox Initialization
	Initial States
	Forces and Propagators
	Maneuvers
	Parameters
	Coordinate Systems and the GUI

	Validation
	Tests for a LEO
	Tests for a Libration Point State
	Tests for an Earth-Trailing State

	Some Mathematical Details
	Defining the Coordinate Axes
	Setting Directions in GMAT

	SpaceObjects: Spacecraft and Formation Classes
	Component Overview
	Classes Used for Spacecraft and Formations
	Design Considerations
	The SpaceObject Class
	The PropState Class

	The Spacecraft Class
	Internal Spacecraft Members
	Spacecraft Members

	Formations
	Conversion Classes
	The Converter Base Class
	Time Conversions
	Coordinate System Conversions
	State Representation Conversions

	Conversions in SpaceObjects
	SpaceObject Conversion Flow for Epoch Data
	SpaceObject Conversion Flow for State Data

	Spacecraft Hardware
	The Hardware Class Structure
	Finite Maneuver Elements
	Fuel tanks
	Thrusters

	Sensor Modeling in GMAT
	Six Degree of Freedom Model Considerations

	Attitude
	Introduction
	Design Overview
	Class Hierarchy Summary
	Program Flow
	Initialization
	Computation

	Script Reading and Writing
	Loading a Script into GMAT
	Comment Lines
	Object Definition Lines
	Command Lines
	Assignment Lines

	Saving a GMAT Mission
	Classes Used in Scripting
	The Script Interpreter
	The ScriptReadWriter
	The TextParser Class

	Call Sequencing for Script Reading and Writing
	Script Reading Call Sequence
	Script Writing Call Sequence

	Interpreting GMAT Functions

	The Graphical User Interface
	wxWidgets
	GmatDialogs
	The Interpreter Classes

	External Interfaces
	The MATLAB Interface
	GMAT Ephemeris Files

	Calculated Parameters and Stopping Conditions
	Parameters
	Stopping Conditions and Interpolators
	Stopping Conditions
	Interpolators

	Propagators = Integrators + Forces
	Propagator Overview
	The Equations of Motion
	Division of Labor: Integrators and Forces

	Integrators
	The GMAT Force Model
	The PhysicalModel Class
	The ForceModel Class
	Applying Forces to Spacecraft

	The State Vector
	The PropSetup Container

	Force Modeling in GMAT
	Component Forces
	Gravity from Point Masses
	Aspherical Gravity
	Solar Radiation Pressure
	Atmospheric Drag
	Engine Thrust

	Maneuver Models
	Mission Control Sequence Commands
	Command Overview
	Structure of the Sequence
	Command Categories
	Command Sequence Structure
	Command--Sandbox Interactions

	The Command Base Classes
	List Interfaces
	Object Interfaces
	Other Interfaces

	Script Interfaces
	Data Elements in Commands
	Command Support for Parsing and Wrappers
	Data Type Wrapper Classes
	Command Scripting Support Methods

	Executing the Sequence
	Initialization
	Execution
	Finalization
	Other Details

	Specific Command Details
	Command Classes
	The GmatCommand Class
	Branch Commands
	Functions

	Command Details
	The Assignment Command
	The Propagate Command
	The Create Command
	The Target Command
	The Optimize Command

	Solvers
	Overview
	Solver Class Hierarchy
	The Solver Base Class
	Solver Enumerations
	Solver Members

	Scanners
	Targeters
	Differential Correction
	Broyden's Method

	Optimizers
	The Optimizer Base Class
	Internal GMAT optimizers
	External Optimizers

	Command Interfaces
	Commands Used by All Solvers
	Commands Used by Scanners
	Commands Used by Targeters
	Commands Used by Optimizers

	Inline Mathematics in GMAT
	Scripting GMAT Mathematics
	Design Overview
	Core Classes
	MathTree and MathNode Class Hierarchy Summary
	Helper Classes

	Building the MathTree
	Program Flow and Class Interactions
	Initialization
	Execution

	GMAT and MATLAB Functions
	General Design Principles
	The Function class
	The FunctionManager

	GMAT Functions
	GMAT Function Design Principles
	Steps Followed for the Sample Script
	Global Data Handling: Another Short Example
	Additional Notes and Comments
	Design
	GmatFunction Details: Construction, Initialization, and Execution
	Usage and Modification

	MATLAB Functions
	Design
	Usage and Modification

	Internal Functions
	Design
	Usage and Modification

	Related Classes: Command Classes
	Design for the CallFunction Command
	Design for the Create Command
	Design for the Global Command

	Related Classes: Engine Components

	Adding New Objects to GMAT
	Shared Libraries
	Adding Classes to GMAT
	Designing Your Class
	Creating the Factory
	Bundling the Code
	Registering with GMAT

	An Extensive Example

	IV Appendices
	Unified Modeling Language (UML) Diagram Notation
	Package Diagrams
	Class Diagrams
	Sequence Diagrams
	Activity Diagrams
	State Diagrams

	Design Patterms Used in GMAT
	The Singleton Pattern
	Motivation
	Implementation
	Notes

	The Factory Pattern
	Motivation
	Implementation

	The Observer Pattern
	The Mediator Pattern
	Motivation
	Implementation
	Notes

	The Adapter Pattern
	The Model-View-Controller (MVC) Pattern

	Command Implementation: Sample Code
	Sample Usage: The Maneuver Command
	Sample Usage: The Vary Command

	GMAT Software Development Tools
	Windows Build Environment
	Macintosh Build Environment
	Linux Build Environment

	Definitions and Acronyms
	Definitions
	Acronyms

