
1

GMAT User-De�ned Function Requirements

Submitter Owner Status Last Updated Targeted Implementation
S. Hughes E. Dove Formulation 3/18/2008 Apr. 08

Feature description and Scope

The function feature allows the user to de�ne custom functions. User de�ned functions are useful for
isolating repetitive calculations that must be performed in the mission sequence. GMAT shall allow a user
to create functions in a general way by de�ning a list of input arguments, a series of operations and events to
be performed on the input arguments, and a list of output arguments to be passed back to the main mission
sequence or calling function.

One way to think about user de�ned GMAT functions is to consider them as mini mission sequences
with their own set of resources and events. The idea is to isolate small mission analysis problems, such
as Lambert's problem, into mini-missions that GMAT can solve as a separate process, and then bring the
desired output back into the main mission sequence or calling function.

The input and output arguments to a user function can be variables, arrays, strings, and GMAT re-
sources. Inside a user-de�ned function the user can create and de�ne local variables, arrays, strings, and
GMAT resources. All input and locally created items can be used in mathematical expressions as well as
events such as Propagate, Optimize, control �ow, etc. Changes to the input arguments are local only to
the user-function unless the input argument is also contained in the output argument list. All user-de�ned
functions can be called from within a user de�ned function, including a function calling itself.

Rationale and Feature Justi�cation

The function feature is useful to all users of GMAT and all GMAT applications. Functions reduce the
duplication of code in a program, enable reuse of code across multiple programs, decompose complex prob-
lems into simpler pieces thereby improving maintainability and ease of extension, improve readability of a
program, and facilitate information hiding .1

Assumptions

• All global objects, including Solar System and path info, are reset between runs.

• All numbers in GMAT are treated as real.

• Matlab interfaces are treated as global objects. Matlab interfaces do not require recreation or recon-
�guring inside of functions.

• The behavior of MATLAB R© calls does not change.

De�nitions

• CallFunction is the name of the command used in GMAT to call all function types available to a
user.

• "File Open" panel is the �le selection window that is used to select the �le of your choice by browsing
to the directory of your choice.

1Advantages extracted from Wikipedia's Function (computer science) article.

2

• Function Control Sequence is the sequence of commands built from a function

• Function in the context of this requirements document, the word function pertains to user-de�ned
GMAT functions unless stated otherwise.

• Global objects exist at the scope of the mission sequence. If GMAT is extended to support multiple
mission sequences, there will be a global store for each mission sequence.

• Literals is a notation for representing an "as is" value. For our application of the word, literals are
using numbers and strings, like 2 and 'MyString' respectively, for function inputs, instead of assigning
numbers and strings to variables and using them as function inputs.

• Mission Control Sequence is the sequence of commands built from the main script.

• Path is the folder location in either relative or absolute notation excluding the �lename.

• Validation of the contents of a function consists of checking the syntax for violations to the GMAT
scripting environment and checking for matching object types passed in and out of the function call.

Functional Requirements

1. Core
1.1. The system must allow the user to employ any command supported by GMAT, inside of functions.
1.2. The system must allow functions to be called inside of functions and the main body of a script.
1.3. The system must allow function recursion, the ability for a function to call itself.
1.4. The system must allow function iteration, the ability for a current function to call another function

and for that function to call the current function.
1.5. The system must allow MATLAB R© to be called from inside of functions. A MATLAB R© function

can not call a GMAT function.
1.6. The system must only support functions with contents residing inside of a .gmf ascii �le.
1.7. The system must perform validation on all declared functions when GMAT performs the following

actions:
Run, Build, Build&Run

1.8. The system must reset the function control sequence to the current contents of the function �le
at runtime.

1.9. The system must only allow one function to be de�ned inside of a function �le. Two or more
functions can not exist in one GMAT function �le. If more than one function is present in a �le,
a warning will be thrown and the system must only accept the �rst function in the �le.

1.10. The system must process user actions to pause or stop while processing a function.
1.11. The system must require that a function is declared before use. Function declaration consists of

GMAT parsing through CallFunction lines and collecting a listing of all functions that are not
Prede�ned, Matlab, or other non-GMAT user-de�ned functions. The collected listing contains the
declared user-de�ned functions. The use of a Create line is not needed for user-de�ned function.

1.12. The system must only allow the use of functions that are found on user speci�ed function paths.
Multiple paths can be used.

1.13. The system must allow the adding and removing of GMAT function paths in the script. Adding
function paths in the script can only occur in the Resource level of the main script.

1.14. The system must order multiple paths based on the ordering the path was added. If there are
multiple GMAT functions of the same name in the paths speci�ed, the function used is the one
from the most recently added function path.

2. Scoping

3

2.1. The system must allow users to create local variables and objects inside of functions. Any type of
object that can be created and used in the main mission sequence must be creatable and useable
inside of a function.

2.2. The system should treat the GMAT solar system model as a global parameter. Solar System
objects do not need to use the Global syntax to be set as global.

2.3. The system must treat Coordinate Systems as global. Coordinate System objects do not need to
use the Global syntax to be set as global.

2.4. The system must treat Propagators as global. Propagator objects do not need to use the Global
syntax to be set as global.

2.5. The system must allow users to declare any previously created object global, excluding the objects
that are always global, in all instances it is used. Objects that are declared global are available in
the main script, and internally in functions without being explicitly stated in the input sequence.

2.6. The system must declare global objects in the scope of each function or script that use the object,
but only create the object in one of these elements. Global objects are declared using the "Global"
keyword, which functions the same way MATLAB R©'s "global" keyword functions.

3. Input/Output
3.1. The system must support the following as function inputs:

3.1.1. Entire objects
3.1.2. Object properties of numeric or string type
3.1.3. Real number variables and arrays
3.1.4. String variables
3.1.5. Literals

3.2. The system must support the following as function outputs:
3.2.1. Entire objects
3.2.2. Object properties of numeric or string type
3.2.3. Real number variables and arrays
3.2.4. String variables

3.3. The system must support calling a function with no inputs and/or outputs.
3.4. The system must, upon return from a function, not change non-global function inputs unless they

also appear in the output argument list.
3.5. The system does not require a user to use a Create command inside of a function for the inputs

passed through the function.
3.6. The system must require the user to use a Create command inside of functions for the output

parameters that are not also input parameters. If an output parameter is global and created
outside of the current function, no Create command is necessary inside the function, only a
Global command.

3.7. The system must require a user to use square braces for the output parameters of a function call,
even if there is only one.

3.8. The system must allow the use of subscribers inside functions.
Refer to the Subscriber Functionality in Functions Requirements for additional details.

Script Requirements

The syntax for declaring functions in a script corresponds to the function path. All �lenames with a
valid GMAT Function extension can be a declared GMAT function. Refer to Functional Requirement 1.11
for additional details on function declaration requirements. Refer to Functional Requirement 1.12- 1.14 for
additional details on function path requirements. Function paths can be added through the startup �le and
inside of the script. Function paths can only be removed from inside of the script.

Examples of adding and removing function paths are presented below:

4

From the startup �le and script:
GmatFunctionPath.Add = ./GmatFunctions/
GmatFunctionPath.Add = C:/GMAT/functions/GmatFunctions/
or
From the script only:
GmatFunctionPath.Remove = C:/GMAT/functions/GmatFunctions/

The syntax for function calls, including how the user speci�es inputs and outputs, must be identical to
MATLAB's R© syntax for function calls.

Examples of calling a function are presented below:

[Out1, Out2,....., OutM] = MyGMATFunction(In1, In2, ... InN)
or
MyGMATFunction(In1, In2, ... InN)
or
[Out1, Out2,....., OutM] = MyGMATFunction
or
[Out1] = MyGMATFunction
or
MyGMATFunction

The syntax for the �rst uncommented line in the contents of a function, must be consistent with
MATLAB's R© syntax for the �rst uncommented line of their function contents.

Examples of the �rst uncommented line of a function's contents are presented below:

function [Out1, Out2,....., OutM] = MyGMATFunction(In1, In2, ... InN)
or
function MyGMATFunction(In1, In2, ... InN)
or
function [Out1, Out2,....., OutM] = MyGMATFunction
or
function [Out1] = MyGMATFunction
or
function MyGMATFunction

GUI Requirements

1. The system must allow the GUI to emulate function functionality available from the script.
2. The system must only allow users to add functions from the CallFunction properties page.
3. The system must have a Global checkbox on every object's properties panel that is capably of being

Global. Objects that are always global should have an un-checkable Global check box.
4. The system will not show global objects declared inside of a function in the GUI. For example, if a

variable MyVar was created in a function and marked as global and used in the main script, MyVar
would not show up in the GUI.

GMAT function folders and �les

5

The functions declared, based on Functional Requirement 1.11, are populated in the Resources Tree under
the Function folder. Figure 1 illustrates the types of Resource Tree �les a user would encounter related to
GMAT functions, excluding the Prede�ned Functions folder.

Figure 1: Example of Objects in Tree

Changing Function Path

Upon opening the properties panel for the GmatFunctionPaths object in the Resource Tree, the user has
the ability to change the path information. Figure 2 illustrates how a user can edit the function paths that
are currently used.

Figure 2: Path Folder Options

1. Path grid - Accepts relative or absolute path information. The path on top is the �rst path used.
1.1. Right clicking a cell brings up a properties panel relevant to the cell, similar to the Propagate and

Control Flow grid cells. The Path cells open the "File Open" panel in the selected function path
folder. The "File Open" panel only allows �les of a type speci�ed in Functional Requirement 1.6
to be selected.

Global Object Check Box
Objects at the Resource level all need a "Global" checkbox, which is initially unchecked except for the
objects that are automatically global. The Global check box for objects that are always global are marked
as checked and uneditable. Figures 3- 4 illustrates examples of the Global object check boxes.

6

Figure 3: Global Check Box (Editable)

Figure 4: Global Check Box (Uneditable)

Editing Function Contents

A user can not create a new GMAT Function �le from the GUI but they can load the contents of an
existing declared function and edit its contents. Figure 5 illustrates the interface for a user to edit the
contents of a GMAT Function.

Figure 5: Editing GMAT Function Contents

1. Function contents text box - Contains the contents of the function speci�ed in the File text box.
1.1. The shortcut keys available in the script editor are available here.

2. The functionality of the OK, Apply, Cancel, and Show Script buttons are consistent with the rest of
the system.

7

Calling a GMAT Function
On the GUI, the CallFunction's properties panel is the only area a user can add or select a function for use
in the mission sequence. Figure 6 illustrates a CallFunction panel to allow a user to take advantage of the
added capabilities presented in this document.

Figure 6: Calling a GMAT Function

1. Input/Output grid - Functionality remains the same.
2. Function Drop Down - The contents of the drop down are populated by MatlabFunctions and previously

declared GmatFunctions, similar to the way the Resource tree will display all usable functions.
3. Add GMAT Function button - Upon activation, opens a "File Open" panel set to the �rst directory in

the GmatFunction path and is populated by the �le extensions listed in Functional Requirement 1.6.
The user selects the GmatFuction from those displayed, or by navigating to a di�erent folder.

4. The functionality of the OK, Apply, Cancel, Show Script, and Command Summary buttons are con-
sistent with the rest of the system.

Implications for Other Features

1. The mission tree should only show one level of function calls. If a function call is made inside of a
function call, the nested function call will not appear in the mission tree. In this event, the user can
see the internal function call by opening the function �le and reading its contents.

Considerations for Future Enhancements

1. The design must not preclude the ability to output errors from functions with incorrect syntax in a
similar way errors are outputted from the main script. The errors should include the line with line
number in the main script where the function is called and the line with line number in the function
where the incorrect syntax is located.

2. The design must not preclude the GUI ability to order function paths once they are added.
3. The design must not preclude the ability to obtain a resource object summary that would include

details of all objects, including whether an object is global.
4. The design must not preclude the ability to add functionality to the CallFunction syntax that is similar

to MATLAB R©'s nargin and nargout feature.
5. The design must not preclude the ability to call a function that returns exactly one value (variable,

array element, or object parameter) in an inline math assignment command. For example, for a user
created GMAT function named func, which produces one variable as its output, the following syntax
is acceptable:

8

varOut = 1 + 3*(func(varIn1) + func(VarIn2));

Unresolved Issues and Requirements

1. The Plot command is not created yet.

Tests and Use Cases

1. I/O Tests
2. Internal Computation Tests
3. Solar system tests
4. MATLAB R© call tests
5. Variables created inside a function are only available inside a function
6. Output tests

6.1. XYPlot
6.2. OpenGL Plot
6.3. ReportFile

