
 1 Preliminaries – what the reader will have seen
already
Listing 1: FunctionExample.script

% Create a s/c
Create Spacecraft Sat;

Create ForceModel Prop_FModel;
GMAT Prop_FModel.PrimaryBodies = {Earth};

Create Propagator Prop;
GMAT Prop.FM = Prop_FModel;

% Variables and arrays needed in calculations
Create Variable SMA ECC RAAN;
Create Variable r v pi2 mu d2r Energy;
Create Variable SMAError ECCError RAANError;
Create Array rv[3,1] vv[3,1] ev[3,1] nv[3,1];

% Create a report to output error data
Create ReportFile Cart2KepConvert;
GMAT Cart2KepConvert.Filename = FunctDiffs.report;
GMAT Cart2KepConvert.ZeroFill = On;

mu = 398600.4415;
pi2 = 6.283185307179586232;
d2r = 0.01745329251994329509

While Sat.ElapsedDays < 1

 Propagate Prop(Sat)

 % Put the state data into some data structures
 [rv, vv, r, v] = LoadCartState(Sat);

 % Calculate the Energy and SMA
 Energy = v^2/2 - mu/r;
 SMA = -mu/2/Energy;

 % Eccentricity built from the eccentricity vector
 ev = cross(vv, cross(rv, vv)) / mu - rv / r;
 [ECC] = magnitude(ev);

1

 % Next the ascending node, using the node vector
 nv(1,1) = x*vz-z*vx;
 nv(2,1) = y*vz-z*vy;
 nv(3,1) = 0;
 [n] = magnitude(nv);
 RAAN = acos(nv(1,1)/n);
 If nv(2,1) < 0;
 RAAN = (pi2 - RAAN) / d2r;
 EndIf;

 SMAError = Sat.SMA - SMA;
 ECCError = Sat.ECC - ECC;
 RAANError = Sat.RAAN - RAAN;

 Report Cart2KepConvert Sat.SMA SMA SMAError ...
 Sat.ECC ECC ECCError Sat.RAAN RAAN RAANError;
EndWhile

Listing 2: LoadCartState.gmf

function [rv, vv, r, v] = LoadCartState(Sat);
% This function fills some arrays and variables with
% Cartesian state data
Create Variable r v
Create Array rv[3,1] vv[3,1]

rv(1,1) = Sat.X;
rv(1,2) = Sat.Y;
rv(1,3) = Sat.Z;
vv(1,1) = Sat.VX;
vv(1,2) = Sat.VY;
vv(1,3) = Sat.VZ;

[r] = magnitude(rv);

[v] = magnitude(vv);

Listing 3: magnitude.gmf

function [val] = magnitude(vec1)

% This function takes a 3-vector in a GMAT array and
% calculates its magnitude

2

Create Variable val
val = sqrt(dot(vec1, vec1));

Listing 4: dot.gmf

function [val] = dot(vec1, vec2)

% This function takes two 3-vectors in a GMAT array and
% constructs their dot product
Create Variable val
val = vec1(1,1) * vec2(1,1) + vec1(2,1) * vec2(2,1) +...
 vec1(3,1) * vec2(3,1);

Listing 5: cross.gmf

function [vec3] = cross(vec1, vec2)

% This function takes two 3-vectors in a GMAT array and
% constructs their cross product
Create Array vec3[3,1]

vec3(1,1) = vec1(2,1) * vec2(3,1) - vec1(3,1) * vec2(2,1);
vec3(2,1) = vec1(3,1) * vec2(1,1) - vec1(1,1) * vec2(3,1);
vec3(3,1) = vec1(1,1) * vec2(2,1) - vec1(2,1) * vec2(1,1);

 2 Steps Followed for the Sample Script
In this section we will look at the script (shown in Listing 1) along with the four
functions used by this script (listings 2 through 5), and examine the behavior of
the Mission Control Sequence, Function Control Sequences, Configuration,
Sandbox, Sandbox Object Map, Global Object Store, and Function Control Stores
as the script is loaded, executed, and removed from memory. This discussion will
be broken into four distinct processes:

1. Script Parsing – the process of reading the script in Listing 1 and building
the resources and Mission Control Sequence.

2. Initialization – The process of passing the configuration and MCS into the
Sandbox.

3. Execution – The process of running the MCS, including calls to the functions.
4. Finalization – Steps taken when the run is complete.

As we will see, each of these steps can be further subdivided to a discrete set of
substeps. We'll begin by examining what happens when the script is first read
into memory.

3

 2.1 Script Parsing

The details of script parsing are described fully in Chapter 16 (“Script Reading and
Writing”). That chapter discusses the modes that the interpreter goes through
when reading a script file, starting with the object property mode, moving through
the command mode, and finishing with the final pass through the mission
resources. You should review the relevant sections of that chapter if this
terminology confuses you.

Table 1 shows the state of the components of the engine at the start of script
reading. This table does not include any elements specific to the Sandbox,
because the Sandbox in in an idle state at this point. When the Sandbox
elements become relevant, they will be added to the tables summarizing the state
of the system.

Table 1: Status at Start of Script Parsing

Configuration MCS Interpreter Mode Sandbox

Empty Empty Object Property Idle

The Script Interpreter remains in Object Property mode until the first command is
encountered in the script. That means that the following lines are all parsed in
Object Property mode:

% Create a s/c
Create Spacecraft Sat;

Create ForceModel Prop_FModel;
GMAT Prop_FModel.PrimaryBodies = {Earth};

Create Propagator Prop;
GMAT Prop.FM = Prop_FModel;

% Variables and arrays needed in calculations
Create Variable SMA ECC RAAN;
Create Variable r v pi2 mu d2r Energy;
Create Variable SMAError ECCError RAANError;
Create Array rv[3,1] vv[3,1] ev[3,1] nv[3,1];

% Create a report to output error data
Create ReportFile Cart2KepConvert;
GMAT Cart2KepConvert.Filename = FunctDiffs.report;
GMAT Cart2KepConvert.ZeroFill = On;

mu = 398600.4415;
pi2 = 6.283185307179586232;

4

d2r = 0.01745329251994329509

After these lines have been parsed, the table of objects looks like this:
Table 2: Status after Parsing the Objects

Configuration MCS Interpreter
Mode

Sandbox

Type
Spacecraft
ForceModel
Propagator
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Array
Array
Array
Array
ReportFile

Name
Sat
Prop_FModel
Prop
SMA
ECC
RAAN
r
v
pi2
mu
d2r
Energy
SMAError
ECCError
RAANError
rv
vv
ev
nv
Cart2KepConvert

Empty Object Property Idle

At this point, the configuration is complete. The objects contained in the
configuration all have valid data values; those that are not set explicitly in the
script are given default values, while those that are explicitly set contain the
specified values.

Note that at this point, the configuration does not contain any functions. GMAT
functions are added to the configuration when they are encountered, as we'll see
when we encounter a script line that includes a GMAT function. The next line of
the script contains a command:

While Sat.ElapsedDays < 1

When the Script Interpreter encounters this line, it toggles into command mode.
Once this line of script has been parsed, the state of the engine looks like this
(note that I'm abbreviating the configuration here – it still contains all of the
objects listed above):

5

Table 3: Status after Parsing the First Command

Configuration MCS Interpreter
Mode

Sandbox

Type
Spacecraft
ForceModel
Propagator
Variable
...
Array
ReportFile

Name
Sat
Prop_FModel
Prop
SMA
...
nv
Cart2KepConvert

While Command Idle

The Script Interpreter parses the next line (a Propagate line) as expected, giving
this state:

Table 4: Status after Parsing the Propagate Command
Configuration MCS Interpreter

Mode
Sandbox

Type
Spacecraft
ForceModel
Propagator
Variable
...
Array
ReportFile

Name
Sat
Prop_FModel
Prop
SMA
...
nv
Cart2KepConvert

While
+ Propagate

Command Idle

The next script line is a function call:

 [rv, vv, r, v] = LoadCartState(Sat);

When the Script Interpreter encounters this function call, several things happen:

1. The line is decomposed into three sets of elements: outputs (rv, vv, r, and
v), the function name (LoadCartState), and inputs (Sat)

2. The Script Interpreter builds a CallFunction command.

3. The Script Interpreter sends a request to the Moderator for a function
named LoadCartState. The Moderator sends the request to the
Configuration Manager. Since the configuration does not contain a function
with this name, the Configuration Manager returns a NULL pointer, which is
returned to the ScriptInterpreter.

4. The Script Interpreter sees the NULL pointer, and calls the Moderator to
construct a GmatFunction object named LoadCartState. The Moderator calls
the Factory Manager requesting this object. It is constructed in a function
factory, and returned through the Moderator to the Script Interpreter. The

6

Moderator also adds the function to the Configuration.

5. The Script Interpreter passes the GmatFunction into the CallFunction
command.

6. The CallFunction command sends the GmatFunction to its FunctionManager.

7. The Script Interpreter passes the list of input and output parameters to the
CallFunction.

8. The CallFunction passes the list of input and output parameters to its
FunctionManager.

This completes the parsing step for the CallFunction line. Note that (1) the
Function Control Sequence is not yet built, and (2) the function file has not yet
been located in the file system. These steps are performed later. At this point,
the system has this state:

Table 5: Status after Parsing the CallFunction Command
Configuration MCS Interpreter

Mode
Sandbox

Type
Spacecraft
ForceModel
Propagator
Variable
...
Array
ReportFile
GmatFunction

Name
Sat
Prop_FModel
Prop
SMA
...
nv
Cart2KepConvert
LoadCartState
 (FCS is empty)

While
+ Propagate
+ CallFunction

Command Idle

Now that we've encountered the first function in the script, it is useful to start
watching the data structures for the function. We'll do this in a separate table:

Table 6: Function Properties after Parsing the First CallFunction

Function Caller1 FunctionManager Function Properties

inputs,
outputs

lists

Function
Object
Store

Global
Object
Store

inputs outputs FCS

LoadCartState CallFunction input and
output
names set

Empty NULL Empty Empty Empty

One feature that it is worth noting at this point is that there are two locations used

1 “Caller” in this context is the type of object – a CallFunction or a FunctionRunner – that is used
to execute the function in this example. It is possible that a function could be called from both
types of object in the same script.

7

for input and output arguments. The list managed in the FunctionManager tracks
the parameters as listed in the function call in the control sequence that is calling
the function. These parameters are listed in the order found in the call. Thus for
this CallFunction, the StringArrays containing the arguments in the
FunctionManager contain these data:

inputNames = {� Sat� }

outputNames = {� rv� , � vv� , � r� , � v� }

The inputs and outputs maps in the Function object map the names used in the
function to the associated objects. Since the function itself has not been built at
this stage, these maps are empty, and will remain empty until the function file is
parsed.

The Function Object Store itself is empty at this point. It provides a mapping
between the function scope object names and the objects. Since the function has
not yet been parsed, this object store remains empty.

The next two script lines do not make function calls, so they can be parsed and
built using the features described in Chapter 16. After these two lines are built:

 Energy = v^2/2 - mu/r;
 SMA = -mu/2/Energy;

the state tables contain these data:

Table 7: Status after Parsing the next two Commands

Configuration MCS Interpreter
Mode

Sandbox

Type
Spacecraft
ForceModel
Propagator
Variable
...
Array
ReportFile
GmatFunction

Name
Sat
Prop_FModel
Prop
SMA
...
nv
Cart2KepConvert
LoadCartState

While
+ Propagate
+ CallFunction
+ Assignment
+ Assignment

Command Idle

and

Table 8: Function Properties after Parsing the First Two Assignment Lines

Function Caller FunctionManager Function Properties

Lists of
inputs &
outputs

Function
Object
Store

Global
Object
Store

inputs outputs FCS

LoadCartState CallFunction input and
output

Empty NULL Empty Empty Empty

8

names set

Both of the lines listed here generate Assignment commands. The right side of
these assignments are MathTree elements, built using the inline math features
described in Chapter 26. As you might expect, the Mission Control Sequence
contains these new commands, but nothing else has changed at this level.

The next line also generates an Assignment line:

 ev = cross(vv, cross(rv, vv)) / mu - rv / r;

This line also builds a MathTree for the right side of the equation. The resulting
tree contains two function calls, both made to the GMAT function named “cross.”
The MathTree built from this Assignment line is shown in Figure 1.

Figure 1: A MathTree with Two Function Calls

Once this command has been built, the state of the system can be tabulated as in
Tables 9 and 10:

Table 9: Status after Parsing the Assignment Line containing Two Calls to the
cross Function

Configuration MCS Interpreter Sandbox

9

Mode

Type
Spacecraft
ForceModel
Propagator
Variable
...
Array
ReportFile
GmatFunction
GmatFunction

Name
Sat
Prop_FModel
Prop
SMA
...
nv
Cart2KepConvert
LoadCartState
cross

While
+ Propagate
+ CallFunction
+ Assignment
+ Assignment
+ Assignment

Command Idle

and

Table 10: Function Properties after Parsing the cross Assignment Line

Function Caller FunctionManager Function Properties

Lists of
inputs &
outputs

Function
Object
Store

Global
Object
Store

inputs outputs FCS

LoadCartState CallFuncti
on

input and
output
names set

Empty NULL Empty Empty Empty

cross Function-
Runner

input
names set
on both

Empty NULL Empty Empty Empty

There are two FunctionRunner nodes in the MathTree shown in Figure 1. Each
one has its own FunctionManager. The inputs and outputs StringArrays have the
following values for these FunctionManagers:

● Lower FunctionRunner MathNode

inputNames = {� rv� , � vv� }

outputNames = {� � }

● Upper FunctionRunner MathNode

inputNames = {� vv� , � � }

outputNames = {� � }

Note that at this point in the process, the unnamed arguments are marked using
empty strings in the StringArrays. This is a general feature of the argument
arrays generated in a FunctionManager associated with a FunctionRunner: empty
strings are used to indicate arguments that must exist, but that do not have
names that can be looked up in the object stores. In general, these empty strings
indicate either output data or results that come from lower calculations performed
in the MathTree.

10

The next script line,

 [ECC] = magnitude(ev);

builds another function call using a CallFunction, this time to the magnitude
function.

Table 11: Status after Parsing the Call to the magnitude Function

Configuration MCS Interpreter
Mode

Sandbox

Type
Spacecraft
ForceModel
Propagator
Variable
...
Array
ReportFile
GmatFunction
GmatFunction
GmatFunction

Name
Sat
Prop_FModel
Prop
SMA
...
nv
Cart2KepConvert
LoadCartState
cross
magnitude

While
+ Propagate
+ CallFunction
+ Assignment
+ Assignment
+ Assignment
+ Assignment

Command Idle

and

Table 12: Function Properties after Parsing the magnitude Line

Function Caller FunctionManager Function Properties

Lists of
inputs &
outputs

Function
Object
Store

Global
Object
Store

inputs outputs FCS

LoadCartState Call-
Function

input and
output
names set

Empty NULL Empty Empty Empty

cross Function-
Runner

input
names set
on both

Empty NULL Empty Empty Empty

magnitude Call-
Function

input and
output
names set

Empty NULL Empty Empty Empty

This process continues through the remaining lines of the script:

 nv(1,1) = x*vz-z*vx;
 nv(2,1) = y*vz-z*vy;
 nv(3,1) = 0;
 [n] = magnitude(nv);
 RAAN = acos(nv(1,1)/n);
 If nv(2,1) < 0;
 RAAN = (pi2 - RAAN) / d2r;

11

 EndIf;

 SMAError = Sat.SMA - SMA;
 ECCError = Sat.ECC - ECC;
 RAANError = Sat.RAAN - RAAN;

 Report Cart2KepConvert Sat.SMA SMA SMAError ...
 Sat.ECC ECC ECCError Sat.RAAN RAAN RAANError;
EndWhile

The only line that calls a GMAT function here is the fourth line, a CallFunction
command that again calls the magnitude function. At the end of parsing, our
tables of object properties look like this:

Table 13: Status after Parsing the Script

Configuration MCS Interpreter
Mode

Sandbox

Type
Spacecraft
ForceModel
Propagator
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Array
Array
Array
Array
ReportFile
GmatFunction
GmatFunction
GmatFunction

Name
Sat
Prop_FModel
Prop
SMA
ECC
RAAN
r
v
pi2
mu
d2r
Energy
SMAError
ECCError
RAANError
rv
vv
ev
nv
Cart2KepConvert
LoadCartState
cross
magnitude

While
+ Propagate
+ CallFunction
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ CallFunction
+ Assignment
+ If
+ + Assignment
+ EndIf
+ Assignment
+ Assignment
+ Assignment
+ Report
EndWhile

Command Idle

and

Table 14: Function Properties after Parsing the magnitude Line

Function Caller FunctionManager Function Properties

Lists of Function Global inputs outputs FCS

12

inputs &
outputs

Object
Store

Object
Store

LoadCartState CallFunction input and
output
names set

Empty NULL Empty Empty Empty

cross Function-
Runner

input
names set
on both

Empty NULL Empty Empty Empty

magnitude CallFunction input and
output
names set

Empty NULL Empty Empty Empty

At this point in the process, the Configuration and Mission Control Sequence have
been populated, and three GMAT functions have been identified but not yet
located. The ScriptInterpreter has finished parsing the script, but has not yet
made its final pass through the objects created during parsing.

During the final pass, object pointers and references are set and validated. the
ScriptInterpreter uses the final pass to locate the function files for all of the
GmatFunction objects built during parsing. The path to each function is set at this
time. The ScriptInterpreter makes a call, through the Moderator, and locates the
function file on the GmatFunctionPath. The file must be named identically to the
name of the function, with a file extension of “.gmf” – so, for example, the
function file for the magnitude function must be named “magnitude.gmf”. These
file names are case sensitive; a file named “Magnitude.gmf” will not match the
“magnitude” function. If there is no matching file for the function, the
ScriptInterpreter throws an exception.

Once this final pass is complete, script parsing has finished, and the
ScriptInterpreter returns to an idle state.

 2.2 Initialization in the Sandbox

The steps followed to parse the Mission Control Sequence, described above, give
GMAT enough information to fully populate the GUI so that it can present users
with a view of the mission contained in the script. At this point, GMAT knows
about the functions described in the Mission Control Sequence, but has not yet
constructed any of these functions. That step is performed when the mission is
passed into the Sandbox and initialized. The basic initialization process is
described in Chapters 3 and 5 of the Architectural specification. The process
followed can be described in three stages:

1. The objects in GMAT's configuration are cloned into the Sandbox Object
Map, and the Mission Control Sequence is set.

2. The objects in the Sandbox Object Map are initialized.

3. Global objects are moved into the Global Object Store.

13

4. Automatic globals are moved from the Sandbox Object Map into the
Sandbox's Global Object Store.

5. The Mission Control Sequence is initialized.

Outside of the cloning process, the GMAT function objects are not affected by the
first two of these steps. Figure 22, copied from the Architectural Specification,
shows the steps followed in the third step to initialize the Mission Control
Sequence.Figure 2: Initializing a Control Sequence

Before going into the details of Figure2, I'll describe the activities performed in the
first two steps.

 2.2.1 Initialization Step 1: Passing Objects to the Sandbox

The first step in initialization is cloning the objects in the configuration into the
Sandbox. At the start of this step, the system status looks like Table 15. The

2 This figure needs some modification based on the text in the rest of this document.

14

Interpreter subsystem will not play a role in this part of the initialization process –
the Interpreters remain idle – so I will remove that column for the time being in
subsequent tables.

One feature of GMAT's design that can be overlooked is that there is a separate
Mission Control Sequence for each Sandbox, and there is a one-to-one relationship
between the Mission Control Sequences and the Sandbox instances. What that
means for this discussion is that the Mission Control Sequence shown in the table
already belongs to the Sandbox shown there. The Mission Control Sequence is
not cloned into the Sandbox3.

Table 15: Status Immediately Before Initialization Starts

Configuration MCS Interpreter
Mode

Sandbox

Type
Spacecraft
ForceModel
Propagator
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Array
Array
Array
Array
ReportFile
GmatFunction
GmatFunction
GmatFunction

Name
Sat
Prop_FModel
Prop
SMA
ECC
RAAN
r
v
pi2
mu
d2r
Energy
SMAError
ECCError
RAANError
rv
vv
ev
nv
Cart2KepConv
ert
LoadCartState
cross
magnitude

While
+ Propagate
+ CallFunction
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ CallFunction
+ Assignment
+ If
+ +
Assignment
+ EndIf
+ Assignment
+ Assignment
+ Assignment
+ Report
EndWhile

Idle Idle, Sandbox
Object Map is
Empty

3 This relationship between the Mission Control Sequences and the array of Sandboxes is
managed in the Moderator. The behavior described here is the default behavior, and is the
behavior used in current implementations of GMAT. Implementations that use multiple
Sandboxes – particularly when used in a distributed manner – will implement a different
relationship between the Mission Control Sequence viewed by the user and the Mission Control
Sequences in the Sandboxes.

15

The objects in the configuration, on the other hand, are contained in GMAT's
engine, outside of the Sandbox. The Moderator accesses these configured objects
by type, and passes each into the Sandbox for use in the mission. The Sandbox
makes copies of these objects using the object's Clone() method. These clones
are stored in the Sandbox Object Map. The clones contain identical data to the
objects in the configuration; making clones at this stage preserves the user's
settings on the configured objects while providing working copies that are used to
run the mission.

Table 16 shows the status of the system after the Moderator has passed the
objects into the Sandbox. The Sandbox Object Map is a mapping between a text
name and a pointer to the associated object. Since the map is from the name to
the object, the Sandbox Object Map in the table lists the name first.

Table 16: Status Immediately After Cloning into the Sandbox

Configuration Sandbox

Type Name MCS
Sandbox Object Map

Name Type

Spacecraft
ForceModel
Propagator
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Array
Array
Array
Array
ReportFile
GmatFunction
GmatFunction
GmatFunction
CoordinateSys4

CoordinateSys
CoordinateSys

Sat
Prop_FModel
Prop
SMA
ECC
RAAN
r
v
pi2
mu
d2r
Energy
SMAError
ECCError
RAANError
rv
vv
ev
nv
Cart2KepConvert
LoadCartState
cross
magnitude
EarthMJ2000Eq
EarthMJ2000Ec
EarthFixed

While
+ Propagate
+ CallFunction
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ Assignment
+ CallFunction
+ Assignment
+ If
+ + Assignment
+ EndIf
+ Assignment
+ Assignment
+ Assignment
+ Report
EndWhile

Sat
Prop_FModel
Prop
SMA
ECC
RAAN
r
v
pi2
mu
d2r
Energy
SMAError
ECCError
RAANError
rv
vv
ev
nv
Cart2KepConvert
LoadCartState
cross
magnitude
EarthMJ2000Eq
EarthMJ2000Ec
EarthFixed

Spacecraft*
ForceModel*
PropSetup*
Variable*
Variable*
Variable*
Variable*
Variable*
Variable*
Variable*
Variable*
Variable*
Variable*
Variable*
Variable*
Array*
Array*
Array*
Array*
ReportFile*
GmatFunction*
GmatFunction*
GmatFunction*
CoordinateSys*
CoordinateSys*
CoordinateSys*

Once the Moderator has passed the Configuration into the Sandbox, the mission
run no longer depends on the Configuration. For that reason, most of the tables

4 The 3 coordinate systems listed at the end of the configuration table are automatically created
by the Moderator

16

shown in the rest of this document will not include a list of the contents of the
configuration. If needed, the Configuration will be displayed separately.

 2.2.2 Initialization Step 2: Object Initialization

Now that the Sandbox has been populated with the configured objects and the
Mission Control Sequence, the Moderator can pass control to the Sandbox to
continue the initialization process. This hand off is made through a call to the
Sandbox::Initialize method. The Sandbox initializes objects in the following order:

1. CoordinateSystem

2. Spacecraft

3. All others except Parameters and Subscribers

4. System Parameters

5. Other Parameters

6. Subscribers

The initialization of these objects follows this basic algorithm:

● Send the Sandbox's solar system to the object

● Set pointers for all of objects referenced by this object

● call the object's Initialize() method

The basic initialization for Function objects are part of element 3 in the list above.
At that point in the initialization process, the Function objects are not yet
populated, so this step does not perform any substantive action. The Sandbox
checks each GmatFunction to ensure that the path to the function file is not
empty as part of this initialization.

 2.2.3 Initialization Step 3: Global Object Management

Once the objects in the Sandbox Object Map are initialized, the objects flagged as
global objects are moved from the Sandbox Object Map into the Global Object
Store. The Sandbox does this by checking the object's isGlobal flag, a new
attribute of the GmatBase class added for global object management.

Some object types are automatically marked as global objects. All instances of
the PropSetup class, Function classes, and coordinate system classes fall into this
category, and are built with the isGlobal flag set.

 2.2.4 Initialization Step 4: Control Sequence Initialization

The final step in Sandbox initialization is initialization of the Mission Control
Sequence. This step in the initialization process includes construction of the
Function Control Sequences, and does the first portion of initialization that is
needed before the Function Control Sequence can be executed. At this stage in

17

the initialization process, the Sandbox Object Map contains clones of all of the
configured objects, the Global Object Store is empty, and the GmatFunction
objects know the locations of the function files. The Function Control Sequences
are all empty, and the system has not identified any functions called from inside
of functions that are not also called in the Mission Control Sequence. The objects
in the Sandbox Object Map have the connections to referenced objects set, and
are ready for use in the Mission Control Sequence.

So far, we have encountered three GmatFunctions, shown in Table 17 with their
data structures:

Table 17: GmatFunction Status at the Start of Control Sequence Initialization

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control

Sequence
Call Stack

LoadCartState empty NULL empty empty empty empty

cross empty NULL empty empty empty empty

magnitude empty NULL empty empty empty empty

As we will see, the call stack, implemented as the “objectStack” attribute in the
GmatFunction class, remains empty throughout the initialization process.

Before initializing the Mission Control Sequence, the Sandbox walks through the
Sandbox Object Map and places the pointer to each coordinate system,
propagator, and function into the Global Object Store. This initial population of
the Global Object Store ensures that the automatic globals cloned from the
configuration can be accessed when they are needed.

The Sandbox initialized the Mission Control Sequence by walking through the list
of commands in the sequence, and performing the following tasks on each:

● Send the pointers to the Sandbox Object Map and the Global Object Map to
the command

● Set the solar system pointer for the command

● Set the transient force vector for the command

● If the command uses a GmatFunction. build that function as described
below

● Call the command's Initialize() method

In order to see how these actions work with GmatFunctions, we'll continue walking
through the sample script. For clarity's sake, it is useful to have a complete
picture of the contents of the Mission Control Sequence. The Mission Control
Sequence, listed by node type and script line, and numbered for reference, can be
written like this:

 1 While While Sat.ElapsedDays < 1

18

 1.1 Propagate Propagate Prop(Sat)
 1.2 CallFunction [rv, vv, r, v] = LoadCartState(Sat);
 1.3 Assignment Energy = v^2/2 - mu/r;
 1.4 Assignment SMA = -mu/2/Energy;
 1.5 Assignment ev = cross(vv,cross(rv, vv))/mu - rv/r;
 1.6 Assignment [ECC] = magnitude(ev);
 1.7 Assignment nv(1,1) = x*vz-z*vx;
 1.8 Assignment nv(2,1) = y*vz-z*vy;
 1.9 Assignment nv(3,1) = 0;
 1.10 CallFunction [n] = magnitude(nv);
 1.11 Assignment RAAN = acos(nv(1,1)/n);
 1.12 If If nv(2,1) < 0;

 1.12.1 Assignment RAAN = (pi2 - RAAN) / d2r;
 1.13 EndIf EndIf;
 1.14 Assignment SMAError = Sat.SMA - SMA;
 1.15 Assignment ECCError = Sat.ECC - ECC;
 1.16 Assignment RAANError = Sat.RAAN - RAAN;
 1.17 Report Report Cart2KepConvert Sat.SMA SMA SMAError

 Sat.ECC ECC ECCError Sat.RAAN RAAN
 RAANError

 2 EndWhile EndWhile

The line of script associated with each node is shown on the right in this list.

At the start of the Mission Control Sequence initialization, the Sandbox Object Map
and Global Object Store contain the following items:

Table 18: The Sandbox Maps

Sandbox Object Map Global Object Store

Name Type Name Type

Sat Spacecraft* Prop PropSetup*

Prop_FModel ForceModel* EarthMJ2000Eq CoordinateSystem*

Prop PropSetup* EarthMJ2000Ec CoordinateSystem*

SMA Variable* EarthFixed CoordinateSystem*

ECC Variable* LoadCartState GmatFunction*

RAAN Variable* cross GmatFunction*

r Variable* magnitude GmatFunction*

v Variable*

pi2 Variable*

mu Variable*

19

d2r Variable*

Energy Variable*

SMAError Variable*

ECCError Variable*

RAANError Variable*

rv Array*

vv Array*

ev Array*

nv Array*

Cart2KepConvert ReportFile*

LoadCartState GmatFunction*

cross GmatFunction*

magnitude GmatFunction*

EarthMJ2000Eq CoordinateSystem*

EarthMJ2000Ec CoordinateSystem*

EarthFixed CoordinateSystem*

These maps stay the same until either a Global command is encountered or a
Create command is encountered that creates an object that is automatically
global.

The steps listed above for command initialization are performed for the first two
commands in the list, items 1 and 1.1, without changing any of the object maps or
function attributes. Item 1.2:

 [rv, vv, r, v] = LoadCartState(Sat);

is a CallFunction that initializes a GmatCommand, so we need to look more closely
at the initialization for this line.

The CallFunction at this point has a FunctionManager which contains the name of
a GmatFunction object and StringArrays for the inputs and outputs. The
StringArrays contain the following data:

inputNames = {� Sat� }

outputNames = {� rv� , � vv� , � r� , � v� }

The Sandbox passes the pointers for the Sandbox Object Map and the Global
Object Store to the CallFunction command. Once the CallFunction has received
the Global Object Store, it uses that mapping to locate the function needed by the
Function Manager, and passes the pointer to that function into the
FunctionManager. The FunctionManager determines the type of the function – in

20

this example, the function is a GmatFunction. The function attributes at this point
are shown in Table 19.

Table 19: GmatFunction Status after Setting the GOS and SOM

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control

Sequence
Call Stack

LoadCartState empty Set empty empty empty empty

cross empty NULL empty empty empty empty

magnitude empty NULL empty empty empty empty

The Sandbox then passes in the pointers to the solar system and transient force
vector, which the CallFunction passes into the FunctionManager. Since the
function in the FunctionManager is a GmatFunction, these pointers will be needed
later in initialization and execution, so the FunctionManager passes these pointers
into the function for later use. (If the function in the FunctionManger was not a
GmatFunction, the pointers would have been discarded.)

At this point, all of the items needed to build the Function Control Sequence exist.
The Sandbox retrieves the pointer for the GmatFunction from the CallFunction
command. It checks to see if the function's Function Control Sequence has been
built. If the Function Control Sequence is NULL, the Sandbox calls the
Moderator::InterpretGmatFunction() method to construct the Function Control
Sequence, which in turn calls the ScriptInterpreter::InterpretGmatFunction()
method. Both of these calls take the function pointer as input arguments. so that
the interpreter has the local Sandbox instance of the GmatFunction that is uses to
build the Function Control Sequence. The
ScriptInterpreter::InterpretGmatFunction() method builds the Function Control
Sequence and returns it, through the Moderator, to the Sandbox.

The LoadCartState GmatFunction that is constructed here is built from this
scripting:

function [rv, vv, r, v] = LoadCartState(Sat);
% This function fills some arrays and variables with
% Cartesian state data
Create Variable r v
Create Array rv[3,1] vv[3,1]

rv(1,1) = Sat.X;
rv(1,2) = Sat.Y;
rv(1,3) = Sat.Z;
vv(1,1) = Sat.VX;
vv(1,2) = Sat.VY;
vv(1,3) = Sat.VZ;

21

[r] = magnitude(rv);

[v] = magnitude(vv);

The process followed in the ScriptInterpreter::InterpretGmatFunction() method will
be described below. Upon return from this function call, the functions contain the
attributes shown in Table 20.

Table 20: GmatFunction Status after Building the LoadCartState FCS

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control

Sequence
Call Stack

LoadCartState empty Set 'Sat' ->
NULL

'rv' -> NULL
'vv' -> NULL
'r' -> NULL
'v' -> NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

cross empty NULL empty empty empty empty

magnitude empty NULL empty empty empty empty

The Sandbox then checks the Function Control Sequence generated in the
ScriptInterpreter, and checks to see if that sequence contains a GmatFunction. If
it does, then for each GmatFunction encountered, the process is repeated.

The Sandbox checks the Function Control Sequence by starting at the first node,
and checking each Assignment and CallFunction command in that control
sequence to see if it references a GmatFunction. Our example script does contain
such a call to a GmatFunction – it calls the magnitude function twice, in the last
two CallFunction commands in the Function Control Sequence. Each of the
FunctionManagers associated with these CallFunction commands have
StringArrays containing the names of the input and output objects that will be
used during execution – more specifically, the FunctionManager associated with
the first CallFunction has these StringArrays:

inputNames = {� rv� }

outputNames = {� r� }

while the second has these:

inputNames = {� vv� }

outputNames = {� v� }

When the Sandbox detects the GmatFunction in the first CallFunction command, it

22

performs the same tasks as were performed on the CallFunction in the Mission
Control Sequence – more specifically:

 1 The Sandbox passes the pointer for the Global Object Store to the
CallFunction command. (Note that the Sandbox does not pass in the
Sandbox Object Map; the Sandbox Object Map is only used in commands in
the Mission Control Sequence.)

 2 Once the CallFunction has received the Global Object Store, it uses that
mapping to locate the function needed by the FunctionManager.

○ If the function was found, the CallFunction passes the pointer to that
function into the FunctionManager

○ If the function was not found, the pointer referenced by the Function
Manager remains NULL.

 3 The FunctionManager determines the type of the function. If the function is
not a GmatFunction, the process ends.

 4 The Sandbox passes the pointers to the solar system and transient force
vector, to the CallFunction, which passes them into the FunctionManager.

 5 The FunctionManager passes these pointers into the function for later use.

At this point, all of the items needed to build the nested Function Control
Sequence exist. Returning to our example, the state of the function object
attributes at this point is shown in Table 21.

Table 21: GmatFunction Status after Detecting the First Nested CallFunction

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control

Sequence
Call Stack

LoadCartState empty Set 'Sat' ->
NULL

'rv' -> NULL
'vv' -> NULL
'r' -> NULL
'v' -> NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

cross empty NULL empty empty empty empty

magnitude empty Set empty empty empty empty

The Sandbox then calls the Moderator::InterpretGmatFunction() method to build
the Function Control Sequence for the magnitude command. The magnitude
function is scripted like this:

function [val] = magnitude(vec1)

23

% This function takes a 3-vector in a GMAT array and
% calculates its magnitude
Create Variable val
val = sqrt(dot(vec1, vec1));

so the resulting Function Control Sequence and other attributes have the values
shown in Table 22 when the Moderator returns control to the Sandbox.

Table 22: GmatFunction Status after Parsing the First Nested CallFunction

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control

Sequence
Call Stack

LoadCartState empty Set 'Sat' -> NULL 'rv' -> NULL
'vv' -> NULL
'r' -> NULL
'v' -> NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

cross empty NULL empty empty empty empty

magnitude empty Set 'vec1' ->
NULL

'val' ->
NULL

Create
Assignment

empty

The Assignment command in the newly created Function Control Sequence is
particularly interesting, because it contains inline mathematics, which use a
previously unencountered GmatFunction named dot. The MathTree for this
Assignment command is shown in Figure 3.

Figure 3: The MathTree for the Assignment command in the magnitude
GmatFunction

24

Note that while the dot GmatFunction has been identified as a needed element for
the Assignment line, there is not yet an instance of a GmatFunction object that is
associated with the dot function, even though the MathTree shown in Figure 3 has
a FunctionRunner MathNode that requires it. This issue will be resolved shortly.

The Sandbox takes this new Function Control Sequence, and checks it for the
presence of a GmatFunction by walking through the list of commands in the
control sequence. When it checks the Assignment command, it finds that there is
a function dependency, and that the associated function does not exist in either
the Global Object Store or in the Sandbox Object Map. Since all function types
except for GmatFunctions must be created before they can be used, the Sandbox
assumes that the needed function is a GmatFunction and asks the Moderator to
create an unnamed GmatFunction5.

The Moderator calls the Factory Manager to create the function, and returns the
pointer of the new function to the Sandbox. The Sandbox then sets its name to
be “dot” and adds it to the Sandbox Object Map and the Global Object Store6. The
Sandbox also performs the preinitialization steps described above: it sets the
solar system pointer on the function, sets any pointers referenced by the function,
and calls the function's Initialize() method. Finally, the Sandbox calls the
Moderator to locate the function file for the GmatFunction and sets the path to the
file, completing this piece of the initialization. The Sandbox then passes the
function pointer to the Assignment command, which passes it, in turn, into the
FunctionRunner node. At this point, the Sandbox can continue initializing the
Assignment command. The GmatFunction data is set as shown in Table 23.

Table 23: GmatFunction Status after Creating the dot Function

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control

Sequence
Call Stack

LoadCartState empty Set 'Sat' -> NULL 'rv' -> NULL
'vv' -> NULL
'r' -> NULL
'v' -> NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

cross empty NULL empty empty empty empty

magnitude empty Set 'vec1' ->
NULL

'val' ->
NULL

Create
Assignment

empty

5 The GmatFunction is unnamed so that it will not be passed to the configuration.
6 GmatFunctions are always added to the Sandbox Object Map so that they are ensured of proper

cleanup when the Sandbox cleans up memory. Other objects created inside of functions are
not handled this way, because they have an associated Create command that can manage
memory for these local objects.

25

dot empty NULL empty empty empty empty

Recall that we are at the point in the initialization where the Sandbox is checking
the Function Control Sequence for the magnitude GmatFunction for internal
function calls. The Sandbox found the dot function as an internal dependency,
and built the corresponding GmatFunction. The final step performed by the
Sandbox at this point is to build the Function Control Sequence for the dot
command. The text of the dot file looks like this:

function [val] = dot(vec1, vec2)

% This function takes two 3-vectors in a GMAT array and
% constructs their dot product
Create Variable val
val = vec1(1,1) * vec2(1,1) + vec1(2,1) * vec2(2,1) +...
 vec1(3,1) * vec2(3,1);

The Sandbox calls the Moderator::InterpretGmatFunction() method to build the
control sequence for the dot function. Upon return, the function attribute table
has the contents shown in Table 24.

Table 24: GmatFunction Status after Interpreting the dot Function

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control

Sequence
Call Stack

LoadCartState empty Set 'Sat' -> NULL 'rv' -> NULL
'vv' -> NULL
'r' -> NULL
'v' -> NULL

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

empty

cross empty NULL empty empty empty empty

magnitude empty Set 'vec1' ->
NULL

'val' ->
NULL

Create
Assignment

empty

dot empty Set 'vec1' ->
NULL
'vec2' ->
NULL

'val' ->
NULL

Create
Assignment

empty

The Sandbox takes the Function Control Sequence built for the dot function, and
checks it for internal function calls. There is an Assignment command in this
control sequence that references inline mathematics, but the corresponding
MathTree does not contain any functions. Therefore, the initialization for the dot

26

function is complete, and the method that built it returns control to the calling
method.

In this case, the calling method is actually the same method – the call was a
recursive call, because we were checking the Function Control Sequence for the
dot function, which was called part way through the check of the Function Control
Sequence for the magnitude function. That call was made for the Assignment
command in the magnitude function. The check for the magnitude Assignment
command has now built all of the functions it needs, so control is returned to the
method that was performing the check on the magnitude function.

Again, the calling method is the method that checks for function calls, this time
for the first CallFunction in the LoadCartState function. All of the function
references in that CallFunction have been resolved and initialized, so the function
check method moves to the second CallFunction. That CallFunction makes a call
to the magnitude function. All of the internal structures needed to execute the
magnitude function have been built, following the procedures discussed above.
The check for this CallFunction does detect that there is a GmatFunction in the
call – a call to the magnitude function. It then checks the magnitude
GmatFunction, and finds that it has been initialized, so it proceeds to the next
command in the LoadCartState Function Control Sequence. Since this second
CallFunction was the last command in that Function Control Sequence, the
LoadCartState function control sequence is now fully initialized and ready to
execute.

We have now initialized all of the system except for the cross function. The
Sandbox is partway through the check on the Mission Control Sequence for
function calls – all of the preceding GmatFunction initialization was performed to
fully initialize the CallFunction command in the Mission Control Sequence. The
next function encountered in the main script is in the third Assignment command.
That command was generated by the script line

ev = cross(vv, cross(rv, vv)) / mu - rv / r;

When the Sandbox checks that line, it finds that there are two FunctionRunner
nodes in the associated MathTree. The first of these nodes requires an initialized
cross function, so the Sandbox follows the process described above to build the
Function Control Sequence for the cross function. Once this first node has been
handled by the Sandbox, the function attribute table looks like Table 25.

Table 25: GmatFunction Status after Interpreting the cross Function

Function
Function
Object
Store

Global
Object
Store

inputs outputs
Function
Control

Sequence
Call Stack

LoadCartState empty Set 'Sat' -> NULL 'rv' -> NULL
'vv' -> NULL
'r' -> NULL
'v' -> NULL

Create
Create
Assignment
Assignment
Assignment
Assignment

empty

27

Assignment
Assignment
CallFunction
CallFunction

cross empty Set 'vec1' ->
NULL
'vec2' ->
NULL

'vec3'->
NULL

Create
Assignment
Assignment
Assignment

empty

magnitude empty Set 'vec1' ->
NULL

'val' ->
NULL

Create
Assignment

empty

dot empty Set 'vec1' ->
NULL
'vec2' ->
NULL

'val' ->
NULL

Create
Assignment

empty

The Sandbox then checks the second FunctionRunner node, and finds that it uses
a function that has already been built – the cross function – so no further action is
necessary for this Assignment command. It moves to the next command in the
Mission Control Sequence, and finds that that command – a CallFunction that uses
the magnitude GmatFunction – is also ready to execute. This process continues
through all of the remaining commands in the Mission Control Sequence. All of
the commands and called functions have been initialized, so the commands and
functions used in the Sandbox have now been fully prepared for the mission run.

 2.2.5 Additional Notes on Initialization

 2.2.5.1 Function and FunctionManager Status Summary

The scripting in our example generates seven specific places where a
FunctionManager interface is built in order to implement the structure needed to
run a GmatFunction. Table 26 shows each of these interfaces, along with the
string descriptors that are set in the interface tables for each of these instances.
The actual data structures that contain the input and output objects are not set
during initialization; they are built the first time the function is called during
execution of the Mission Control Sequence. That process is described in the
execution section of this text.

Table 26: Summary of the Function Interfaces

Script Line Interface
Type

FunctionManager Function

inputNames outputNames name inputs outputs

[rv, vv, r, v] =
LoadCartState(S
at)

Call-
Function

'Sat' 'rv'
'vv'
'r'
'v'

LoadCartSt
ate

'Sat' ->
NULL

'rv' -> NULL
'vv' -> NULL
'r' -> NULL
'v' -> NULL

ev = cross(vv,
cross(rv, vv)) /

Function-
Runner

'rv'
'vv'

'' cross
(inner

'vec1' ->
NULL

'vec3'->
NULL

28

mu - rv / r; (Two
instances)

instance) 'vec2' ->
NULL

'vv'
''

'' cross
(outer
instance)

'vec1' ->
NULL
'vec2' ->
NULL

'vec3'->
NULL

[ECC] =
magnitude(ev)

Call-
Function

'ev' 'ECC' magnitude 'vec1' ->
NULL

'val' ->
NULL

[n] =
magnitude(nv)

Call-
Function

'ev' 'n' magnitude 'vec1' ->
NULL

'val' ->
NULL

[r] =
magnitude(rv)

Call-
Function

'rv' 'r' magnitude 'vec1' ->
NULL

'val' ->
NULL

[v] =
magnitude(vv)

Call-
Function

'vv' 'v' magnitude 'vec1' ->
NULL

'val' ->
NULL

val =
sqrt(dot(vec1,
vec1));

Function-
Runner

'vec1'
'vec1'

'' dot 'vec1' ->
NULL
'vec2' ->
NULL

'val' ->
NULL

Before we examine execution, a few items should be mentioned about the work
performed in the ScriptInterpreter when the InterpretGmatFunction() method is
invoked.

 2.2.5.2 Details of the ScriptInterpreter::InterpretGmatFunction()
Method

The Interpreter::InterpretGmatFunction()7 method is very similar to the
ScriptInterpreter::Interpret() method. The differences arise in the Interpreter
state, the parsing for the function line in the function file, and the management of
the commands created during the parsing of the function file.

The InterpretGmatFunction() method has this signature:

GmatCommand* Interpreter::InterpretGmatFunction(Function *funct)

The InterpretGmatFunction() method does not manage state in the same sense as
the Interpret() method. At the point that the InterpretGmatFunction() method is
invoked, there is no longer a sense of “object mode” and “command mode,”
because every executable line in a GmatFunction file has an associated command
– in other words, there is no “object mode” at this point in the process. Since
there is no sense in tracking state, the Interpreter treats the entire time spent
reading and building the GmatFunction as if it were in Command mode.

When the InterpretGmatFunction() method is invoked, it takes the Function
pointer from the function's argument list and retrieves the function file name and
path from that object. It opens the referenced file, and uses the

7 While this method is most naturally assigned to the ScriptInterpreter – since it is interpreting a
text file describing the function – the method itself is found in the Interpreter base class.

29

ScriptReadWriter and TextParser helper classes to parse the function file, one
logical block at a time.

The first logical block in a GmatFunction file defines the function, and must start
with the “function” keyword. An example of this line can be see in the first line of
the cross function in Listing 5:

function [vec3] = cross(vec1, vec2)

If the keyword “function” is not encountered as the first element in the command
section of the the first logical block in the file, the method throws an exception
stating that the Interpreter expected a GmatFunction file, but the function
definition line is missing.

The remaining elements in this logical block are used to check the function name
for a match to the expected name, and to set the input and output argument lists
for the function. The list contained in square brackets is sent, one element at a
time, into the function as the output elements using the SetStringParameter()
method. Similarly, the function arguments in parentheses following the function
name generate calls to the SetStringParameter() method, setting the names for
the input arguments. Thus, for example, the function definition line above for
the cross function generates the following calls into the GmatFunction object that
was passed into the InterpretGmatFunction() method:

// Calls that are made to the cross function. These are not
// intended to be actual code; they are representative calls.
// The actual code will loop through the argument lists rather
// than perform the linear process shown here.

// Given these values from the TextParser:
// inputList = {� vec1� , � vec2� }
// functionName = � cross�
// outputList = {� vec3� }

// First check the name
if (functionName != funct->GetName())
 throw CommandException(� The GmatFunction \� � +
 funct->GetName() + � \� in the file \� � +
 funct->GetStringParameter(� Filename�) +
 � \� does not match the function identifier in the file.�);

// Next set the input argument(s)
funct->SetStringParameter(INPUTPARAM_ID, inputList[0]);
funct->SetStringParameter(INPUTPARAM_ID, inputList[1]);

// And the output argument(s):
funct->SetStringParameter(OUTPUTPARAM_ID, outputList[0]);

30

(Of course, the exception message should be changed to conform to GMAT's usual
message formats.) The code in the GmatFunction is built to receive these values,
and populate the internal data structures accordingly. This, for example, when
the line

funct->SetStringParameter(INPUTPARAM_ID, inputList[0]);

is executed, the GmatFunction checks the inputs map and, if the input value is not
in the map, adds it to the map, something like this:

// on this call: SetStringParameter(INPUTPARAM_ID, � vec1�),
// the GmatFunction does this:

if (inputs.find(� vec1�) == inputs.end())
 inputs[� vec1�] = NULL;
else
 throw FunctionException(� Invalid operation: an attempt was�
 � made to add an input argument named \� � + � vec1� +
 � \� , but an argument with that name already exists.�);

Once the function definition line has been parsed, the process followed to build
the Function Control Sequence begins. The Function Control Sequence is built
using the same process as is followed for the Mission Control Sequence: the
function file is read one logical block at a time, the command corresponding to
that logical block is constructed, and the command is appended to the control
sequence. The only difference for this phase of initialization is this: when GMAT is
building a Mission Control Sequence, the sequence that receives the new
commands is the Mission Control Sequence associated with the current Sandbox.
For GmatFunction, the control sequence is the Function Control Sequence
associated with the current function.

 2.3 GmatFunction Execution

Once the Mission Control Sequence and all referenced Function Control
Sequences have been initialized, they are ready for execution in the Sandbox.
The Moderator launches execution by calling the Sandbox::Execute() method.
When this method is called, the Sandbox sets an internal pointer to the first
command in the Mission Control Sequence, and then enters a loop that walks
through the Mission Control Sequence one command at a time. For each
command in the Mission Control Sequence, the Sandbox performs the following
actions:

1. Check to see if a user interrupt has occurred, and if so, respond to it.

2. Call the Execute() method on the current command.

3. Set the current command pointer to the command returned by calling
GetNext() on the command that just executed.

4. If the new current command pointer is not NULL, loop to step 1; otherwise,

31

the Mission Control Sequence is finished executing and control returns to
the Moderator.

In this section, we will examine the behavior of the execution of the commands
that reference GmatFunctions exclusively. Readers interested in the general
execution of the Mission Control Sequence are referred to Chapters 3 through 5
and Chapter 23 of the GMAT Architectural Specification.

The first command that references a GmatFunction is the command near the top
of the While loop which was generated by this text:

[rv, vv, r, v] = LoadCartState(Sat);

This script line generates a CallFunction command. That CallFunction has a
FunctionManager that references the LoadCartState GmatFunction. The first time
Execute() is called for this CallFunction, these objects have the attributes shown
in Table 27. (For the CallFunction, only the pointers needed in this discussion are
shown in the object stores. The example used here does not use any global
objects, so just the Global Object Store status is indicated.)

Table 27: CallFunction Attributes Prior to First Execution

CallFunction FunctionManager LoadCartState function

Sandbox
Object
Store

Global
Object
Store

input-
Names

output-
Names

Functio
n Object

Store

inputs outputs Function
Object
Store

Global
Object
Store

Sat
rv
vv
r
v

set 'Sat' 'rv'
'vv'
'r'
'v'

empty Sat-
>NULL

rv->NULL
vv->NULL
r->NULL
v->NULL

NULL NULL

The first time a CallFunction or FunctionRunner is executed, the final piece of
initialization is performed so that all of the data structures used for the execution
are set and the Function Control Sequence is fully initialized. Subsequent calls
into the same CallFunction or FunctionRunner updates the data used in the
function calls by copying the data into the Function Object Store using the object's
assignment operator. Both of these processes are described below, and
illustrated using our sample functions.

 2.3.1 Steps Performed on the First Execution

The first time a CallFunction or FunctionRunner executes, the following processes
are performed:

1. The CallFunction tells the FunctionManager to build the Function Object
Store. The FunctionManager performs the following actions in response:

○ First the input arguments are set up:

■ The FunctionManager finds each input object listed in the inputNames

32

StringArray

■ The input object is cloned , using its Clone() method

■ The Function is queried for the name of the matching input argument

■ The clone is set in the Function Object Store, using the function's
argument name as the map key

■ An ElementWrapper is built for the clone

■ The ElementWrapper is passed to the Function as the input argument

○ Then the output arguments are set up:

■ The FunctionManager finds each output object listed in the
outputNames StringArray

■ The output object is stored in an ObjectArray for later use

○ If this process fails for any input or output object, an exception is thrown
and the process terminates.

○ The Function Object Store and Global Object Store are passed into the
Function

At this point, the objects managed by this CallFunction have the attributes shown
in Table 28.

Table 28: CallFunction Attributes After Building the Function Object Store

CallFunction FunctionManager LoadCartState function

Sandbox
Object
Store

Global
Object
Store

input-
Names

output-
Names

Function
Object
Store

inputs outputs Function
Object
Store

Global
Object
Store

Sat
rv
vv
r
v

set 'Sat' 'rv'
'vv'
'r'
'v'

'Sat' ->
 Sat
clone

Sat-
>clone
 wrapp
er

rv->NULL
vv->NULL
r->NULL
v->NULL

set set

2. Initialize the Function by calling Function->Initialize(). This call makes the
Function complete initialization for each command in the Function Control
Sequence. Each command in the Function Control Sequence (1) receives
the pointer to the Function Object Store, Global Object Store, and Solar
System, and then (2) calls the Initialize() method on the command.

3. Execute the Function Control Sequence by walking through the linked list of
commands in the sequence, calling Execute() on each commands in the
sequence and using the command's GetNext() method to access the next
command that is executed. Some details are provided below for the
behavior of CallFunction commands and FunctionRunner MathNodes
encountered during this process.

33

Create commands encountered during this execution sequence add their
objects to the Function Object Store. Global commands add the identified
objects to the Global Object Store as well. At the end of the execution step,
the attributes for the CallFunction example are listed in Table 29. Note that
the pointers in the outputs attribute have not been set yet.

Table 29: CallFunction Attributes After Building the Function Object Store

CallFunction FunctionManager LoadCartState function

Sandbox
Object
Store

Global
Object
Store

input-
Names

output
-

Names

Function
Object
Store

inputs outputs Function
Object
Store

Global
Object
Store

Sat
rv
vv
r
v

set 'Sat' 'rv'
'vv'
'r'
'v'

'Sat' ->
Sat
 clon
e
'rv'->rv
'vv'->vv
'r'->r
'v'->v

Sat-
>clone
 wrapp
er

rv->NULL
vv->NULL
r->NULL
v->NULL

set set

4. Retrieve the output data generated from the execution, and use it to set
data in the output arguments that were stored in step 1. The output
arguments are retrieved through a call to
Function::GetOutputArgument(Integer argNumber), which finds the output
argument at the indicated location and returns it

5. Reset the Function Control Sequence so it is ready for subsequent calls to
this function. The final state of the function attributes is shown in Table 30.

Table 30: CallFunction Attributes After Execution

CallFunction FunctionManager LoadCartState function

Sandbox
Object
Store

Global
Object
Store

input-
Names

outpu
t-

Name
s

Function
Object
Store

inputs outputs Function
Object
Store

Global
Object
Store

Sat
rv
vv
r
v

set 'Sat' 'rv'
'vv'
'r'
'v'

'Sat' -> Sat
 clon
e
'rv'->rv
'vv'->vv
'r'->r
'v'->v

Sat-
>NULL

'rv' -> rv
'vv' -> vv
'r' -> r
'v' -> v

NULL set

 2.3.2 Steps Performed on the Subsequent Executions

Subsequent calls into a CallFunction or FunctionRunner that has executed once

34

have a simplified first step, because the structures in the FunctionManager are
initialized in the first call. Subsequent calls follow the following procedure:

1. The CallFunction tells the FunctionManager to refresh the Function Object
Store. The FunctionManager performs the following actions in response:

○ The input arguments are updated using the assignment operator to set
the clones equal to the original objects.

○ The Function Object Store is passed into the Function.

At this point, the objects managed by this CallFunction have the attributes shown
in Table 31.

Table 31: CallFunction Attributes After Building the Function Object Store

CallFunction FunctionManager LoadCartState function

Sandbox
Object
Store

Global
Object
Store

input-
Names

output-
Names

Function
Object
Store

inputs outputs Function
Object
Store

Global
Object
Store

Sat
rv
vv
r
v

set 'Sat' 'rv'
'vv'
'r'
'v'

'Sat' ->
 Sat
clone

Sat-
>clone
 wrapp
er

rv->NULL
vv->NULL
r->NULL
v->NULL

set set

2. Initialize the Function by calling Function->Initialize(). This call makes the
Function complete initialization for each command in the Function Control
Sequence. Each command in the Function Control Sequence (1) receives
the pointer to the Function Object Store, Global Object Store, and Solar
System, and then (2) calls the Initialize() method on the command. (This
repetition of step 2 is required because the same function can be called
from multiple locations, with different input objects, so the object pointers in
the Function Control Sequence have to be refreshed each time a function is
entered.)

3. Execute the Function Control Sequence by walking through the linked list of
commands in the sequence, calling Execute() on each command in the
sequence and using the command's GetNext() method to access the next
command that is executed.

4. Retrieve the output data generated from the execution, and use it to set
data in the output arguments.

5. Reset the Function Control Sequence so it is ready for subsequent calls to
this function.

 2.3.3 Functions within Functions

GmatFunctions can call other GmatFunctions, either in a nested manner, or by
calling recursively into the same function. When a GmatFunction detects that it is

35

about to call into a GmatFunction in this manner, it needs to preserve the current
state of the function data so that, upon return from the nested call, the function
can resume execution. This preservation of function data is accomplished using a
call stack, implemented as the GmatFunction::objectStack data member.

An example of the use of the call stack can be seen in the example script that
we've been working through. The first function call, made to the LoadCartState
function, uses a CallFunction in the Mission Control Sequence. When the Sandbox
calls this function, the steps outlined in the previous section are performed,
initializing and setting the Function Object Store and Function Control Sequence,
and then calling the Execute method on each command in the Function Control
Sequence to run the function. The use of the call stack can be seen when we
examine the details of this process, as we will do in the following paragraphs.

When the Sandbox receives a message to execute the Mission Control Sequence,
it sets its state to “RUNNING” and sets the current command pointer to the first
command in the Mission Control Sequence. For our example, that means the
current pointer start out pointing to the While command generated by this line of
script:

While Sat.ElapsedDays < 1

The command is executed, and control returned to the Sandbox. The Sandbox
then calls the GetNext() method to determine the next command to execute. The
command pointer returned from that call points back to the While command
again, because the While command is a branch command. The Sandbox polls for
a user interrupt, and then calls the Execute() method on the While command
again. The While command begins the execution of the commands inside of the
While loop by calling its ExecuteBranch() method. That call executes the first
command in the while loop,

Propagate Prop(Sat)

which advances the spacecraft one step and returns control to the While
command. The While command then calls GetNext() on the Propagate command
that just executed, and sets its loop command pointer to the returned value – in
this case, a pointer to the CallFunction command generated by this line:

 [rv, vv, r, v] = LoadCartState(Sat);

The While command then returns control to the Sandbox. The Sandbox calls
GetNext() on the While command, and receives, again, a pointer back to the While
command, since the While command is running the commands in the while loop.
The Sandbox polls for interrupts, and then calls Execute() on the While command,
which calls ExecuteBranch(), which, in turn, calls Execute() on the CallFunction
command. The CallFunction command and FunctionManager have completed
initialization of the GmatFunction as described above, and the CallFunction has
made a call into the FunctionManager::Execute() method to run the function. The
following discussion picks up at that point. I'll refer to this long sequence of calls
as the “Sandbox call chain” for the rest of this section – in other words, the

36

Sandbox call chain is the sequence

Sandbox::Execute() --> While::Execute()
 --> While::ExecuteBranch()
 --> CallFunction::Execute()
 --> FunctionManager::Execute()

The function that is executing at this point is the LoadCartState GmatFunction,
which has the Function Control Sequence, Function Object Store, and call stack
shown in Table 32. The functions called during execution of this function are also
listed in this table, along with their attributes. The pointer in the FCS column
shows the next command that will be executed; for example, the first Create
command in the LoadCartState will be executed at the point where we resume
discussion of the actual process in the next paragraph.

Table 32: Attributes of the LoadCartState GmatFunction and Subfunctions

LoadCartState magnitude dot

FCS FOS Call
Stack

FCS FOS Call
Stack

FCS FOS Call Stack

> Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

Sat
clone

empty Create
Assignment

NULL empty Create
Assignment

NULL empty

The first call on the Sandbox call chain at this point executed the Create
command

Create Variable r v

placing the variables r and v into the function object store, as is shown in Table
33.

Table 33: Attributes of the LoadCartState GmatFunction After the Executing the
First

Create Command

LoadCartState magnitude dot

FCS FOS Call
Stack

FCS FOS Call
Stack

FCS FOS Call Stack

Create
> Create
Assignment
Assignment
Assignment

Sat
clone
r
v

empty Create
Assignment

NULL empty Create
Assignment

NULL empty

37

Assignment
Assignment
Assignment
CallFunctio
n
CallFunctio
n

The next call executes the second Create command

Create Array rv[3,1] vv[3,1]

adding the rv and vv arrays to the Function Object Store. The next six calls
execute the six assignment commands that are used to set the elements of the rv
and vv arrays:

rv(1,1) = Sat.X;
rv(1,2) = Sat.Y;
rv(1,3) = Sat.Z;
vv(1,1) = Sat.VX;
vv(1,2) = Sat.VY;
vv(1,3) = Sat.VZ;

Once all of these commands have executed, the attributes contain the data
shown in Table 34, the next command to be executed is the first CallFunction
command, and the function is ready to call the first nested function.

Table 34: Attributes of the LoadCartState GmatFunction After the Executing the
Six Assignment Commands

LoadCartState magnitude dot

FCS FOS Call
Stack

FCS FOS Call
Stack

FCS FOS Call Stack

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
> CallFunction
CallFunction

Sat
clone
r
v
rv
vv

empty Create
Assignment

NULL empty Create
Assignment

NULL empty

The CallFunction that is about to be invoked was generated from the script line

[r] = magnitude(rv);

Whenever the Sandbox call chain invokes a command, the following actions occur
in the FunctionManager::Execute() method:

38

1. The FunctionManager::Execute() method checks to see if the command that
needs to be executed makes a function call. If it does:

○ A flag is set indicating that a nested function is being run. (This flag is
used to prevent repetition of the following bullets when the
FunctionManager::Execute() method is reentered after polling for a user
interrupt.)

○ The Function Object Store is cloned.

○ The Function Object Store is placed on the call stack.

○ The nested function (or functions, if more than one function call is made)
is initialized, using the clone of the Function Object Store for the
arguments and nested Function Object Store that are passed to the
nested function.

2. The Execute() method is called for the command.

3. The GetNext() method is called for the command.

4. Control is returned to the caller so that interrupt polling can occur.

Once this process is started, calls from the Sandbox call chain into the
FunctionManager::Execute() method as the result of polling for user interrupts
skip the first step.

For the CallFunction command under discussion here, the attribute table shown in
Table 35 described the internal state of the data immediately following the
initialization in step one.

Table 35: Attributes of the LoadCartState GmatFunction after Initializing the
First CallFunction Command

LoadCartState magnitude dot

FCS FOS Call
Stack

FCS FOS Call
Stack

FCS FOS Call Stack

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
> CallFunction
CallFunction

Clones
of:
Sat
clone
r
v
rv
vv

Original
FOS

>Create
Assignment

clone
of vv
clone

empty Create
Assignment

NULL empty

The magnitude GmatFunction is now ready to be run through the LoadCartState
function. The next call through the Sandbox call chain invokes a call to the
magnitude function's Create() command, which builds a variable named val.
Table 36 shows the attributes after running this command.

39

Table 36: Attributes of the LoadCartState GmatFunction After Running the
First magnitude Command

LoadCartState magnitude dot

FCS FOS Call
Stack

FCS FOS Call
Stack

FCS FOS Call Stack

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
> CallFunction
CallFunction

Clones
of:
Sat
clone
r
v
rv
vv

Original
FOS:
Sat
 clone
r
v
rv
vv

Create
>Assignment

'vec1'-
>
 clone
of
 vv
clone
val

empty Create
Assignment

NULL empty

The next call through the Sandbox call chain invokes the magnitude function's
Assignment command, built off of this line of script:

val = sqrt(dot(vec1, vec1));

The right side of this equation generates a MathTree. One node of that MathTree
is a FunctionRunner, constructed to run the dot GmatFunction. Hence the check
performed by the FunctionManager that is running the magnitude function detects
that there is a nested function call in its Assignment command. Accordingly,
when it is time to evaluate the MathTree, the controlling FunctionManager passes
a pointer to itself into the MathTree, which passes that pointer to each
FunctionRunner node in the tree. Then when the MathTree makes the call to
evaluate the FunctionRunner node, the FunctionRunner starts by calling the
controlling FunctionManager::PushToStack() method, which clones its local
Function Object Store, places the original on its call stack, and build the Function
Object Store for the nested function. It then sets the clone as the Function Object
Store for the FunctionManager inside of the FunctionRunner, and calls that
FunctionManager's Evaluate() method. The Evaluate method starts by initializing
the function, using the newly cloned Function Object Store as the source for the
objects needed for initialization. The resulting attributes are shown in Table 37.

Table 37: Attributes of the LoadCartState GmatFunction After Running the
First magnitude Command

LoadCartState magnitude dot

FCS FOS Call
Stack

FCS FOS Call
Stack

FCS FOS Call
Stack

Create
Create
Assignment
Assignment
Assignment
Assignment

Clones
of:
Sat
clone
r
v

Original
FOS:
Sat
 clone
r
v

Create
>Assignment

Clones
of:
'vec1'-
>
 clone
of

Origina
l FOS:
'vec1'-
>
 clone
of

>Create
Assignment

'vec1'->
 clone
of
 clone
of
 vv

empty

40

Assignment
Assignment
> CallFunction
CallFunction

rv
vv

rv
vv

 vv
clone
val

 vv
clone
val

clone
'vec2'->
 clone
of
 clone
of
 vv
clone

The dot function can now be run. This execution is made by calling the Evaluate()
method on the FunctionRunner. In turn, the FunctionRunner executes the
function. Fortunately, this function does not call another. Upon completion of the
execution of the dot function, the attributes have the values shown in Table 38.

Table 38: Attributes of the LoadCartState GmatFunction After Evaluating the dot
Command in the magnitude Function

LoadCartState magnitude dot

FCS FOS Call
Stack

FCS FOS Call
Stack

FCS FOS Call Stack

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
>
CallFunction
CallFunction

Clones
of:
Sat
clone
r
v
rv
vv

Origina
l FOS:
Sat
 clone
r
v
rv
vv

Create
>Assignme
nt

Clones
of:
'vec1'->
 clone
of
 vv
clone
val

Original
FOS:
'vec1'->
 clone
of
 vv
clone
val

Create
Assignme
nt

'vec1'->
 clone of
 clone of
 vv
clone
'vec2'->
 clone of
 clone of
 vv
clone
val

empty

At this point we can start unwinding the call stack. The Function Object Store for
the dot function includes a Variable, val, that has the scalar product of the vv
Array with itself. Once the dot function has completed execution, the
FunctionManager retrieves this value, and saves it so that it can be passed to the
MathTree as the result of the Evaluate() call on the FunctionRunner node. The
FunctionManger then finalizes the dot function, clearing the Function Object Store
pointer in the dot function. The FunctionRunner then calls the controlling
FunctionManager's PopFromStack() method, which deletes the cloned call stack
and restores the Function Object Store that was on the call stack. The MathTree
completes its evaluation, retrieving the values obtained from the dot function, and
using that value to build the resultant needed by the Assignment command that
contains the MathTree. The attributes at this point are shown in Table 39.

Table 39: Attributes of the LoadCartState GmatFunction After Evaluating the
magnitude

Assignment Command
LoadCartState magnitude dot

41

FCS FOS Call
Stack

FCS FOS Call
Stack

FCS FOS Call Stack

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
>
CallFunction
CallFunction

Clones
of:
Sat
clone
r
v
rv
vv

Origina
l FOS:
Sat
 clone
r
v
rv
vv

Create
Assignment

'vec1'->
 clone
of
 vv
clone
val

empty Create
Assignme
nt

NULL empty

The Assignment command that called into the dot function used the results of
that function to set the value of the val Variable in the magnitude function's
Function Object Store. That Assignment command was the last command in the
magnitude function's Function Control Sequence, so the call to the magnitude
function made from the LoadCartState function has completed execution. The
FunctionManager for the LoadCartState function retrieves the output argument –
in this case, the val Variable – from the magnitude function. It then deletes the
cloned function object store, pops the Function Object Store off of the call stack,
locates the object set to contain the output – that is, the r Variable – in this
Function Object Store, and calls the assignment operator to set these two objects
equal. That process is followed for all of the output arguments in the function call,
and then the FunctionManager clears the magnitude function, completing the
execution of the CallFunction command. These steps result in the attributes
tabulated in Table 40.

Table 40: Attributes of the LoadCartState GmatFunction After Evaluating the
Clearing the magnitude Function

LoadCartState magnitude dot

FCS FOS Call
Stack

FCS FOS Call
Stack

FCS FOS Call Stack

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
>
CallFunction

Sat
clone
r
v
rv
vv

empty Create
Assignment

NULL empty Create
Assignme
nt

NULL empty

This process is repeated for the last CallFunction in the LoadCartState Function
Control Sequence, resulting in calls that set the value of the v Variable in the

42

LoadCartState Function Object Store. Once this final CallFunction has been
evaluated, the FunctionManager in the Mission Control Sequence CallFunction
command that started this process – that is, the FunctionManager that is running
the LoadCartState function -- retrieves the output objects, one at a time, and sets
the objects in the Sandbox Object Map referenced by the CallFunction command
equal to the objects found in the LoadCartState Function Object Store using the
corresponding assignment operators. This completes the LoadCartState function
execution, so the CallFunction FunctionManager finalizess the LoadCartState
function, resulting in the attributes shown in Table 41. The LoadCartState
function is now ready for a new call, should one be encountered later in the
mission.

Table 40: Attributes after running the LoadCartState Function

LoadCartState magnitude dot

FCS FOS Call
Stack

FCS FOS Call
Stack

FCS FOS Call Stack

Create
Create
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
CallFunction
CallFunction

NULL empty Create
Assignment

NULL empty Create
Assignment

NULL empty

 2.4 Finalization

The final step in running scripts that use GMAT functions is the cleanup after the
function has been run. The normal procedure followed in the Sandbox is to call
RunComplete() on the Mission Control Sequence, which gives each command the
opportunity to reset itself for a subsequent run. The CallFunction and Assignment
commands that access GmatFunctions use this call to execute the RunComplete()
method in the Function Control Sequences contained in those functions.

The Sandbox Object Map and Global Object Store are left intact when GMAT
finishes a run. Subsequent runs in GMAT start by clearing and reloading these
object stores. The preservation of the final states of the objects in the Sandbox
makes it possible to query these objects for final state data after a run completes
execution.

 3 Global Data Handling: Another Short Example
In this section, we will examine another short sample to show how global data is
managed in GMAT when functions are present. The main script that drives this
example is shown here:

Create ImpulsiveBurn globalBurn;

43

Create Spacecraft globalSat;
Create Variable index;

Create ForceModel fm
fm.PrimaryBodies = {Earth}
Create Propagator prop
prop.FM = fm

Create OpenGLPlot OGLPlot1;
GMAT OGLPlot1.Add = {globalSat, Earth};

Global globalBurn globalSat
Propagate prop(globalSat) {globalSat.Earth.Periapsis}
For index = 1 : 4
 RaiseApogee(index);
 Propagate prop(globalSat) {globalSat.Earth.Periapsis}
EndFor

The function called here, RaiseApogee, applies a maneuver to the spacecraft so
that subsequent propagation moves the spacecraft on different trajectory. The
function is defined like this:

function [] = RaiseApogee(burnSize)

Global globalBurn globalSat
globalBurn.Element1 = burnSize / 10.0;
Maneuver globalBurn(globalSat);

This function uses two objects that are not defined in the function, and that are
also not passed in using arguments to the function. These objects are placed in
the Sandbox's Global Object Store. In the next few pages we will examine this
object repository during initialization, execution, and finalization.

 3.1 Globals During Initialization

At the start of initialization in the Sandbox, the Global Object Store is empty, the
Sandbox Object Map contains the objects from the Configuration, and the Mission
Control Sequence has been built from parsing of the script. The state of the
objects in the Sandbox immediately before the start of Mission Control Sequence
initialization is shown in Table 41.

Table 41: The Objects in the Globals Example at the Start of Initialization

Mission Objects RaiseApogee Function

Sandbox
Object Map

Global Object
Store

Mission Control
Sequence

Function
Object Store

Global Object
Map

Function
Control

Sequence

globalBurn
globalSat

empty Global
Propagate

NULL NULL empty

44

index
fm
prop
EarthMJ2000Eq
EarthMJ2000Ec
EarthFixedOGL
Plot1
RaiseApogee

For
 CallFunction
 Propagate
EndFor

The first thing the Sandbox does after initializing the objects in the Sandbox
Object Map is to collect the automatic global objects from the Sandbox Object
Map and sets them in the Global Object Store. The Sandbox also finds all objects
in the Sandbox Object Store that are marked as globals via the isGlobal flag, and
moves those objects into the Global Object Store. These objects are set as
globals using a check box on the GUI, or using the “MakeGlobal” object property
in the script file. For this example, neither case is met, so the only global objects
are the automatic globals – the Propagator and the Function found in the script.
Table 42 shows the resulting rearrangement of objects.

Table 41: The Objects in the Globals Example at the Start of Initialization

Mission Objects RaiseApogee Function

Sandbox
Object Map

Global Object
Store

Mission Control
Sequence

Function
Object Store

Global Object
Map

Function
Control

Sequence

globalBurn
globalSat
index
fm
OGLPlot1

prop
EarthMJ2000Eq
EarthMJ2000Ec
EarthFixed
RaiseApogee

Global
Propagate
For
 CallFunction
 Propagate
EndFor

NULL NULL empty

Note that the global objects have been moved from the Sandbox Object Map into
the Global Object Store. This feature – glossed over in the earlier discussion –
makes memory management for the objects at the Sandbox level simple. When
the Sandbox is cleared, all of the objects in the Sandbox Object Map and the
Global Object Store are deleted.

This feature has implications for global objects created inside of functions as well.
If an object created inside of a function is declared global, either explicitly using a
Global command or implicitly by virtue of its type, the Sandbox checks the Global
Object Store to see if an object of that name is already stored in it. If the object
already exists in the Global Object Store, the types of the objects are compared,
and if they do not match, an exception is thrown. Additional discussion of the
interplay between the Create command and the Global command are provided in
the design specifications for those commands.

Once the automatic globals have been moved into the Global Object Store, the
Sandbox proceeds with initialization of the commands in the Mission Control

45

Sequence. This process follows the procedure described in the preceding
sections, so the results are summarized here, with details related to global objects
discussed more completely.

The first command of interest in this discussion is the Global command. At
construction, this command was given the names of the global objects identified
for the command. These names are stored in the command for use at execution
time. No action is applied for this command during initialization.

The next command of interest is the CallFunction command. When the
CallFunction command initializes, the Global Object Store pointer is passed into
the function contained in the CallFunction – in this case, the RaiseApogee
function. Then the solar system and transient force vector pointers are set in the
function. The function is then retrieved by the Sandbox, and passed to the
ScriptInterpreter::InterpretGmatFunction() method, which builds the Function
Control Sequence. Upon return, the attributes are set as shown in Table 42.

Table 42: The Objects in the Globals Example on return from
InterpretGmatFunction

Mission Objects RaiseApogee Function

Sandbox
Object Map

Global Object
Store

Mission Control
Sequence

Function
Object Store

Global Object
Map

Function
Control

Sequence

globalBurn
globalSat
index
fm
OGLPlot1

prop
EarthMJ2000Eq
EarthMJ2000Ec
EarthFixed
RaiseApogee

Global
Propagate
For
 CallFunction
 Propagate
EndFor

NULL set Global
Assignment
Maneuver

Like the Mission Control Sequence, the Function Control Sequence contains a
Global command. The names of the global objects identified for this command
are set in the InterpretGmatFunction() method when the GmatFunction is parsed.
Nothing else happens for the Global command during the initialization that builds
the Function Control Sequence.

The Sandbox continues initializing the commands in the Mission Control Sequence
until they are all initialized, completing the process.

 3.2 Globals During Execution

Next we will examine the behavior of the Global commands during execution of
the Mission Control Sequence. The first command that is executed in the Mission
Control Sequence is the Global command defined by the line

Global globalBurn globalSat

in the Function Control Sequence. This command contains a list of the global
objects, specified as objects named “globalBurn” and “globalSat”. When the

46

Global::Execute() method is called, it takes this list and, for each element in the
list, performs these actions:

 1 Check the command's object map (in this case the Sandbox Object Store)
for the named object.

 2 If the object was found:

 2.1 Check the Global Object Store for an object with the same name.

 2.2 If no such object was found, remove the object from the object map and
set it in the Global Object Store. Continue at step 4.

 2.3 If the object was found in the Global Object Store, throw an exception
stating that an object was found in the Global Object Store with the same
name as one that was being added, and terminate the run.

 3 The object is not in the object map, so the Global command needs to verify
that it was set by another process in the Global Object store. Looks for the
object, and verify that it in the Global Object Store and that its pointer is not
NULL. If the pointer is NULL, throw an exception and terminate the run.

 4 Get the next name from the list of global objects. If the list is finished, exit,
otherwise, return to step 1 to process the next global object.

The Global command in the Mission Control Sequence follows the process shown
in step 2.2, moving the declared objects into the Global Object store, as shown in
Table 43.

Table 43: The Objects in the Globals Example after Executing the Global
Command in the Mission Control Sequence

Mission Objects RaiseApogee Function

Sandbox
Object Map

Global Object
Store

Mission Control
Sequence

Function
Object Store

Global Object
Map

Function
Control

Sequence

index
fm
OGLPlot1

prop
EarthMJ2000Eq
EarthMJ2000Ec
EarthFixed
RaiseApogee
globalBurn
globalSat

Global
Propagate
For
 CallFunction
 Propagate
EndFor

NULL set Global
Assignment
Maneuver

Execution of the Global command in the Mission Control Sequence simply verifies
that the global objects are set as specified.

47

	 1 Preliminaries – what the reader will have seen already
	 2 Steps Followed for the Sample Script
	 2.1 Script Parsing
	 2.2 Initialization in the Sandbox
	 2.2.1 Initialization Step 1: Passing Objects to the Sandbox
	 2.2.2 Initialization Step 2: Object Initialization
	 2.2.3 Initialization Step 3: Global Object Management
	 2.2.4 Initialization Step 4: Control Sequence Initialization
	 2.2.5 Additional Notes on Initialization
	 2.2.5.1 Function and FunctionManager Status Summary
	 2.2.5.2 Details of the ScriptInterpreter::InterpretGmatFunction() Method

	 2.3 GmatFunction Execution
	 2.3.1 Steps Performed on the First Execution
	 2.3.2 Steps Performed on the Subsequent Executions
	 2.3.3 Functions within Functions

	 2.4 Finalization

	 3 Global Data Handling: Another Short Example
	 3.1 Globals During Initialization
	 3.2 Globals During Execution

