
Building a GMAT Plug-in: A Walkthrough Using Visual Studio

2010

Darrel J. Conway
Thinking Systems, Inc.

December 7, 2012

Abstract

This document walks a Visual Studio Windows developer through the process of building a plug-
in module for the General Mission Analysis Tool (GMAT). The procedure starts the reader from a
predefined set of skeleton code available online, and shows the user how to configure that code to add
a custom feature to GMAT. The example plug-in used in this walkthrough writes information to the
GMAT message window.

An appendix to this document describes the steps needed to configure the GUI for the new object(s).

The General Mission Analysis Tool (GMAT) is a spacecraft mission design and analysis tool that lets users
model spacecraft trajectories using high fidelity physical models. The tool provides capabilities for spacecraft
trajectory propagation, maneuvering using impulsive or finite duration thruster firings, parameter targeting
and optimization, and mission data modeling and analysis. Additional capabilities can be added to GMAT
by writing shared libraries that extend the core system functionality. These plug-in modules have been
used to add new optimizers, numerical integrators, atmospheric models, and event computations to GMAT.
Complex subsystem can also be added using the plug-in interfaces. One example is the prototype estimation
capabilities added to GMAT and released starting in 2011, which includes both batch least squares and
extended Kalman filter estimators, along with several simple and complex measurement models and a data
simulator. The Plug-in system was first presented at the 4th International Conference on Aerospace Tools
and Techniques[1] and described in some detail in an earlier developer’s document[2].

In this document, I will walk new developers through the process of adding a plug-in module to GMAT.
The example used for this tutorial will add a new command to GMAT’s Mission Control Sequence that writes
data to the GMAT Message Window. I’ll begin by describing the basic configuration needed as a starting
point, and then direct you to the files needed to work through the exercise. Next we’ll look at the desired
functionality, and then use the starting files to add this functionality to GMAT. Once the code compiles,
we’ll configure GMAT to use the new plug-in, completing the lesson.

The instructions provided here assume you are building GMAT using Visual Studio 2010 on a Windows
based computer. This lesson is driven from a core set of configuration files that set up the basic Visual
Studio project settings for compilation, which you will download as part of the process described here.

1 Preparation

In order to build a GMAT plug-in, you need a computer configured to build GMAT on the operating system
you plan to use with your plug-in. This document is aimed at developers working on Microsoft Windows,
developing with Visual Studio 2010. The development environment setup instructions are provided in a
document in GMAT’s repository on SourceForge[4]. You’ll need to retrieve the source code and data files

1

from that location in order to proceed. The Plug-in code builds on code contained in GMAT’s source files,
so you need those files, arranged as described below, in order to proceed1.

2 Configuration to Build a Plug-in

The project files used for this walkthrough assume that you have a specific arrangement of source code files
and dependencies. The path data is entered in the Visual Studio project files using relative path information.
If you are using a different file arrangement, you’ll need to make adjustments to the project file settings to
match your configuration.

Figure 1 shows the folder structure used in the instructions that follow. You should already have the
Gmat3rdParty folder and GmatDevelopment folder set up on your computer from when you configured it
and built GMAT, following the instructions referenced in the preceding section. We will now proceed to
collect the files you need for this Walkthrough. Those files are managed in the GMAT Plugins project at
SourceForge.

Figure 1: Folder Structure after Downloading Plugin Repository

2.1 Retrieving and Setting Up the Files

The code used in this tutorial can be downloaded from the GMAT Plugins repository at SourceForge. The
command line checkout of the entire plug-ins repository can be perfomed by changing directories to the
desired location of the code (that is, to the folder containing your Gmat3rdParty and GmatDevelopment
folders), and then executing this command:

svn checkout svn://svn.code.sf.net/p/gmatplugins/code/trunk GmatSFPlugins

1The file arrangement and other setup requirements described here are needed regardless of your development platform.
Visual Studio specifics don’t enter the discussion until I start describing the code in the next section.

2

This command places all of the projects available in the GMAT Plugins repository on your machine. The
code we use for this tutorial is found in the folder named PluginShell\src. We will work with a copy of
the files contained in that folder, so that the project files and associated source remain in an unconfigured
state in case you want to start a new plug-in from them after completing this exercise. To finish preparing
to work:

1. Create a new folder named SamplePlugin in the folder containing GmatDevelopment and Gmat3rdParty.

2. Copy the PluginShell folder into the SamplePlugin folder.

3. Open the example folder in your SamplePlugin folder, and copy the command folder from that location
into the SamplePlugin\src folder.

When you are finished with this step, your folders should be arranged as shown in Figure 2.

Figure 2: Folder Arrangement for the Walkthrough

We are now ready to begin defining and building our plug-in.

3 Defining the Desired Functionality

When GMAT runs a mission, it provides the user with information about progress in the run in a window
at the bottom of the main GMAT window. The panel that receives this information is called the Message
Window. Figure 3 shows this window.
GMAT defines a static class named MessageInterface which is used to send text to this window using a
syntax similar to the C printf function. A call to write to the message window looks like this:

double myFloat = 3.141592653589793

MessageInterface::ShowMessage("Here is an example showing pi: %lf\n",

myFloat);

3

Figure 3: The Message Window

When this code executes, the scripted line appears in the message window. The code that we’ll use in the
plug-in described here uses this framework to create a new GMAT Mission Control Sequence command that
wraps this interface into a scriptable instruction for your GMAT missions. When we are done, you’ll be able
to pass strings, variables, and some object parameters to the command, which will then write their values
to the message window. The command syntax for this is scripted in GMAT as follows:

Create String hi

%--

%---------- Mission Sequence

%--

BeginMissionSequence;

hi = ’Hello, VS2010 Plugin Developers!’;

ConsolePrint hi

Let’s begin setting Visual Studio up to build the plugin that makes this work.

4

4 Setting Up Visual Studio 2010

Follow these steps to set up Visual Studio 2010 (VS2010) to use the solution and project files we copied from
the plugins repository earlier:

1. Open Visual Studio 2010.

2. From the File menu, select Open >Project/Solution...

3. Select the PluginShell.sln solution file from your SamplePlugin\PluginShell\build\VS2010 folder and
select the Open button.

This opens the solution and project files in Visual Studio. First we need to set the development environment
to build the plug-in library with settings compatible with the standard GMAT build. We want to set the
system to build a release version of the library using Microsoft’s 32-bit compiler. These settings are made
using comboboxes (that is, drop-down selections) at the top of the VS2010 window, just below the menu
bar. In the first combobox, select Release. In the second combobox, select Win32. When you are finished,
your configuration should look like Figure 4.

Figure 4: Selecting the Configuration and Platform for the Build

If you look closely at Figure 4, you’ll see that the factory and plugin folders in the project do not contain
any files, and that there is no command folder in the project. That is because the project as stored in the
SourceForge repository does not yet contain any source code file references. We need to tell it about the code
that we will be compiling. We set the new folder up as a “filter” in VS2010, and then set the file references
using Windows Explorer:

4. In the Solution Explorer on the left side of the VS2010 window, right click on the “Source Files” label
and select Add >New Filter. A new folder is added to the project tree named “NewFilter1’.

5

5. Change the filter’s name to “command”.

6. If VS2010 is running full screen on your computer, select the “Restore Down” button to shrink it into
a window that you can place next to another window.

7. Open Windows Explorer, and size it so that you can see both the Windows Explorer contents and the
VS2010 Solution Explorer.

8. Navigate in Windows Explorer to your PluginShell\src\include folder. You should see a file named
SampleDefs.hpp.

9. Drag the SampleDefs.hpp file from Windows Explorer to the VS2010 Solution Explorer, and drop it
into the GmatPluginShell\Header Files folder.

10. Navigate in Windows Explorer to your PluginShell\src\factory folder. You should see two files in this
folder.

11. Select both files, and drag them from Windows Explorer into the VS2010 Solution Explorer, dropping
them into the GmatPluginShell\Source Files\factory folder.

12. Repeat this procedure for the files in the PluginShell\src\command and PluginShell\src\plugin folders.

When you have finished, your VS2010 Solution Explorer should match the one shown in Figure 5.

Figure 5: VS2010 with the Plug-in File References Set

6

5 Coding the Plug-in

GMAT plug-ins consist of three distinct pieces: the code that implements the new functionality, a set of
Factory subclasses that are used to build new GMAT components coded into the plug-in, and a set of C
style interfaces GMAT uses to learn about and access the plugin contents. The following sections describe
each of these elements.

5.1 Coding the New Functionality

The lines in the Mission Control Sequence that define the actions taken when you run a mission are imple-
mented through classes derived from the GmatCommand class. GmatCommand, in turn, is derived from
GmatBase, the core class for all of the objects in the model describing the user’s mission. The ConsolePrint
command we are building into the plug-in is derived from GmatCommand. Source code for this command
is in the command folder you copied into the src folder in Section 2.1.

Open the file src\command\ConsolePrint.hpp in a text editor. Near the top of that file you’ll find the
lines

...

#include "SampleDefs.hpp"

#include "GmatCommand.hpp"

#include "MessageInterface.hpp"

/**

* Example functionality used in the plug-in walkthrough document.

*

* This command adds functionality to GMAT that enables scripting of text to the

* GMAT Message Window.

*/

class SAMPLE_API ConsolePrint : public GmatCommand

{

...

There are two things I want to point out in these lines. First, the class definition includes a preprocessor
macro, SAMPLE API. This macro is used to specify the Windows dynamic link library import and export
interfaces provided for the class2. Every class that is exposed between GMAT modules (that is, between two
shared libraries, or between a shared library and a GMAT executable) needs to identify themselves. This
specification is done for the ConsolePrint command using the SAMPLE API macro.

The second item to look at is the include line at the start of the listing above. The file SampleDefs.hpp
is contained in the src\include folder. That file defines the SAMPLE API macro in a manner that defines
it for all of the platforms GMAT supports. This is done by wrapping the macro definition inside of a set of
nested macros, shown here in an abbreviated form:

#ifdef _WIN32 // Windows

#ifdef _DYNAMICLINK // Only used for Visual C++ Windows DLLs

#ifdef SAMPLE_EXPORTS

#define SAMPLE_API __declspec(dllexport)

#else

#define SAMPLE_API __declspec(dllimport)

#endif

2Developers writing code for Linux and Mac do not need this macro for their platform. However, since GMAT is written to
be cross-platform compatible with Windows, setting up this piece from the start will simplify porting code to run on Windows
if that becomes necessary.

7

#endif

#endif // End of OS nits

#ifndef SAMPLE_API

#define SAMPLE_API

#endif

(The full definition in SampleDefs.hpp includes other pieces needed for working with the Standard Template
Library string classes in Windows DLL’s. If you’d like to see the full code, open SampleDefs.hpp in VS2010
by double clicking on the file name in the VS2010 Solution Explorer.) When we build the plug-in, we’ll
define the preprocessor macros DYNAMICLINK and SAMPLE EXPORTS, which will give the compiler
the correct definitions to allow export of the ConsolePrint class.

The code implementing the ConsolePrint command is in the src\command\ConsolePrint.cpp file. If you
are interested in how the command performs its function, refer to the code found there. In this document,
we are interested in the mechanics of exposing that functionality to GMAT, and will use the ConsolePrint
command code without making any changes.

All model components that a user defines through a script are managed in GMAT using a class derived
from GMAT’s Factory class. We will configure the factory for the ConsolePrint command next.

5.2 The Plug-in Factory

Figure 6: GMAT’s Factory Types

In GMAT, objects that the user scripts are created from classes through a call to a GMAT Factory. Each
Factory accesses the constructor of one or more classes to create objects of a specific core type. Most of the

8

core types GMAT supports are shown in Figure 6. Since the ConsolePrint class is a GmatCommand, we
need to configure a Command Factory to create instances of the class. We’ll do this in the SampleFactory
code we added to VS2010 earlier.

1. Open VS2010 if it is not already open, and load the GmatPluginShell solution.

2. Open the header file SampleFactory.hpp by double clicking on its node in the Solution Explorer.

3. Find the following lines in the header file:

//virtual GmatCommand* CreateCommand(const std::string &ofType,

// const std::string &withName = "");

4. Uncomment these lines.

5. Save the file.

The factory we are configuring here is used to create instances of the ConsolePrint command object.
Since that object was derived from GMAT’s GmatCommand class, we need to be sure that the factory
has a method for creating GmatCommand objects. That is what we have done by declaring that our
SampleFactory has a CreateCommand method. In GMAT, each factory can create one and only one type of
base object. In this case, we are creating commands from our factory, so the SampleFactory can only create
command objects. If we had several different types of commands, we could have this single factory support
all of the commands that we were adding to GMAT. For now, though, we are only interested in adding the
ConsolePrint command. We have identified the new method that we need to support the command, so now
we need to implement it:

6. Open the SampleFactory.cpp file. Add the following code to the bottom of the file (you’ll find this
code already in place there, commented out, so all you need to do is uncomment it):

GmatCommand* SampleFactory::CreateCommand(const std::string &ofType,

const std::string &withName)

{

// This is how you’d implement creation of a ConsolePrint command

if (ofType == "ConsolePrint")

return new ConsolePrint();

// add more here

return NULL; // doesn’t match any type of Command known by this factory

}

This code performs the work required of the factory by creating and returning a new ConsolePrint
command to GMAT when the method is invoked with the input string “ConsolePrint”. GMAT’s Factory
Manager learns about the types of objects that a factory can create though a parameter that is set when
the factory is created. It also learns the scripted names of the objects available in the factory by obtaining
an array of names. We configure these items next:

7. At the top of SampleFactory.cpp, we need to identify the core type supported by the factory. That
piece of the code is set correctly for command factories in these lines:

SampleFactory::SampleFactory() :

Factory (Gmat::COMMAND)

{

...

9

so we don’t need to make a change for this part of the code. If you were adding a different type – for
example, a force used in the force model – you would change the Gmat::COMMAND parameter to the
correct type (for instance, Gmat::PHYSICAL MODEL for a new force).

8. If you continue reading the default constructor, you’ll find the list of creatable objects for the factory:

...

if (creatables.empty())

{

// Replace the SampleClass string here with your class name. For multiple

// classes of the same type, push back multiple names here

creatables.push_back("SampleClass");

}

}

Replace the string “SampleClass” with the script name for our new command, “ConsolePrint”.

9. The same string appears twice more in the code setting the creatables array; replace those occurrences
as well.

10. Finally, we need to add the header file for the ConsolePrint command to the include list for the factory.
Near the top of the file, replace the include statement

#include "SampleClass.hpp"

with the line

#include "ConsolePrint.hpp"

This completes configuration of the factory we need for the walkthrough. In production code, you would
remove the extra commented out method prototypes in the header file, rename the factory class itself to
something more informative – perhaps PrintFactory for this example – and polish the code a bit more.

5.3 The Plug-in Interfaces

Before we can compile, we need to fill in information used by GMAT when loading the plug-in. This step is
performed in the code in the plugin folder. GMAT defines two interfaces that we need to adapt to our new
code. Open the GmatPluginFunctions.hpp file in VS2010 to see these interface functions. The code we need
to change is the first two functions in the extern “C” block:

extern "C"

{

Integer SAMPLE_API GetFactoryCount();

Factory SAMPLE_API *GetFactoryPointer(Integer index);

void SAMPLE_API SetMessageReceiver(MessageReceiver* mr);

};

GMAT calls these functions when it loads a plug-in during start up. Since they are called from an external
program – in this case, the Moderator in GMAT’s main library, libGmatBase – the functions include the DLL
import/export SAMPLE API directive described above. (Note that the Factory also had this macro in the
class definition, since the factory is also accessed externally.) The methods themselves are straightforward.
The GetFactoryCount method returns an integer indicating how many classes derived from Factory are in
the plug-in. We have a single factory, so the default code (found in GmatPluginFunctions.cpp):

10

Integer GetFactoryCount()

{

// Update this line with the total number of factories you support:

return 1;

}

is sufficient for our needs. The second function returns a pointer to a Factory object. If the plug-in
contains multiple factories, the input parameter is used to identify which factory is needed. In our case, there
is only one factory, accessed as Factory number 0 (since C indexes from zero by default). The default factory
name is “SampleFactory” in this code, so we don’t need to make any changes to the default implementation
here either:

Factory* GetFactoryPointer(Integer index)

{

Factory* factory = NULL;

// Update this code with your factories, one index per factory

switch (index)

{

case 0:

factory = new SampleFactory;

break;

default:

break;

}

return factory;

}

Finally, we need to be sure that the SampleFactory header file is included in order for this code to compile.
Since the line

#include "SampleFactory.hpp"

occurs near the top of the file, the code should be ready for use.

6 Compiling and Running

All of the coding for the plug-in is now complete. However, if you try to build the project by right clicking
on the project node and selecting “Build” (go ahead and do this!), you’ll find that the project cannot build.
The problem is reported in the VS2010 message window:

1>------ Build started: Project: GmatPluginShell, Configuration: Release Win32 ------

1>Build started 10/8/2012 3:36:35 PM.

...

1>ClCompile:

1> SampleFactory.cpp

1>..\..\src\factory\SampleFactory.cpp(26): fatal error C1083: Cannot open include file:

’ConsolePrint.hpp’: No such file or directory

1>

1>Build FAILED.

11

The issue is that when we added the source code for the ConsolePrint command, we did not add the
path for that code to the VS2010 C++ project file. We’ll do that now:

1. Right click on the GmatPluginShell node in the VS2010 Solution Explorer, and select “Properties”
from the dialog that pops up. (In default VS2010 setups, this entry is at the bottom. It might not be
at the bottom if you have added any VS2010 add-on libraries.) The Property Pages dialog will open.

2. In the Configurations combobox in the upper left side of the panel, set the confiration to “All Config-
urations”.

3. On the left side of the Property Pages dialog, select the C/C++ — General setting. (You may need
to click on the arrow next to C/C++ entry to see this option.)

4. The topmost entry on the panel should be “Additional Include Directories”. Click on the downwards
pointing arrow at the right side of the list of include directories (see Figure 7), and select <Edit...>.

Figure 7: Adding a new include file folder

5. A dialog will appear showing the list of folders searched when the compiler needs to find a specified
header. We are going to add an entry to this list.

6. Select the line that reads “..\..\src\factory”, and press the control (Ctrl) and Insert keys simultaneously
on your keyboard to insert a new line.

7. Add the line “..\..\src\command”

12

8. Apply the change by pressing the OK button.

9. Press the OK button on the Property Pages dialog to apply the changes to the project.

Now try compiling the project again. It should build and create a new library in your GMAT project
folder. Check to see if the file libSamplePlugin.dll is in your GmatDevelopment\application\plugin folder.
If so, the project built correctly and you are ready to configure GMAT to use the plugin.

1. Open your GMAT startup file (GmatDevelopment\application\bin\gmat startup file.txt) in a text
editor.

2. Add the line

PLUGIN = ../plugins/libSamplePlugin

to the list of plugin modules in the file.

3. Save the file.

Now start GMAT. If you select the Mission tab and right click on the top node, then select Append>,
you’ll see the ConsolePrint command in the list of commands available for use in the Mission Control
Sequence. Finally, if you enter this script into GMAT:

Create String hi

BeginMissionSequence;

hi = ’Hello, VS2010 Plugin Developers!’;

ConsolePrint hi

and run it, you’ll see that the ConsolePrint command works as desired (see Figure 8).

Figure 8: Results of Running with the ConsolePrint Command

13

A GUI Configuration for Plug-in Objects

This appendix imports draft documentation prepared by T. Grubb of NASA GSFC[5].
GMAT allows plug-in writers to define an INI file to describe their resource panels. When GMAT creates

a resource setup panel for an object, it looks inside the data\gui config directory for an ini file. The name of
the INI file is the Object name with the suffix “.ini”, e.g., for FuelTank, GMAT would look for FuelTank.ini.
The ini file allows a lot of control over the appearance of the panel.

The INI file is broken up into the following sections (note that the brackets are required INI file syntax):

• [MAIN]

• [<PARAMETER NAME >]*

• [<GROUPS >]*

The MAIN section contains general properties for controlling the display of the resource panel. The
following properties are valid:

Property Value Description
Sort Properties True/False Controls whether the panel sorts the Parameters by Name

(not the Label)

Each Parameter defined for the object may have its own section, with its name being the Parameter
name, e.g., “[FuelDensity]”. Within this section, you define the appearance of the control for the Parameter.
Note that the actual control created for the parameter (edit box, check box, combo box, etc) is dependent
on the data type of the Parameter. Three controls are actually created for every parameter (except boolean
parameters): Text Label, Edit Control, and Units Label. The following properties are valid for a Parameter:

Property Value Description
Hint String Defines the hint shown when hovering over the control for

the Parameter
Label String Defines the text label for the parameter
Parent <Section Name > Defines the visual parent of the control and its label. Use

this property to set up groups of Parameters within the
Resource Panel. If Parent does not exist, the param-
eter control’s parent is the main resource panel.

Position Before <Parameter Name > Defines the ordering of the Parameter’s control within the
Resource Panel. Use “Position Before” to direct GMAT
to place this control before (above) the controls for the
specified Parameter Name

Unit String Defines the text label after the parameter for the units,
e.g., Km

Each group section defines a group box within the resource panel. The properties in this section define
the group box. To define which Parameters are displayed in the group box, set the Parent name/value pair
of the relevant Parameter section to the group section name. Note that the TYPE property of the
section identifies this section as a group and not as a Parameter. The following properties are
valid:

14

Property Value Description
Columns Integer Number of columns (used only with Flex or Grid

groups)
Horizontal Gap Integer Defines extra space between rows
Label String Defines the text label for the parameter
Parent <Section Name > Defines the visual parent of the control and its la-

bel. Use this property to set up groups of Param-
eters within the Resource Panel. If Parent does
not exist, the group’s parent is the main
resource panel.

Position Before <Parameter Name > Defines the ordering of the Parameter’s control
within the Resource Panel. Use “Position Be-
fore” to direct GMAT to place this control before
(above) the controls for the specified Parameter
Name

Rows Integer Number of rows (used only with Flex or Grid
groups)

Type VERTICAL, HORIZONTAL,
FLEX, or GRID

Defines the layout direction for controls within the
group box. If Type=Vertical, each Parameter’s
control and label appear on a separate row RE-
QUIRED PROPERTY

Vertical Gap Integer Defines extra space between columns

A.1 Example .ini File

[MAIN]

; Sort properties = true to sort by property name (not property label)

;Sort Properties=True

[Tank Properties]

Type=Vertical

Label=Tank Properties

[Fuel Properties]

Type=Vertical

Label=Fuel Properties

Position Before=Tank Properties

[FuelMass]

Hint=The total mass of fuel available in the fuel tank

Label=F&uel Mass

Parent=Fuel Properties

[FuelDensity]

Label=Fuel Density

Parent=Fuel Properties

Position Before=Temperature

[Temperature]

Parent=Fuel Properties

15

[RefTemperature]

Label=Reference Temperature

Parent=Fuel Properties

[AllowNegativeFuelMass]

Parent=Fuel Properties

Label=Allow &Negative Fuel Mass

Position Before=FuelDensity

[Pressure]

Parent=Fuel Properties

Position Before=

[Volume]

Parent=Tank Properties

[PressureModel]

Parent=Tank Properties

References

[1] Darrel J. Conway and Steven P. Hughes, The General Mission Analysis Tool (GMAT): Current Features
and Adding Custom Functionality, May 2010 . Available in the GMAT Subversion repository, in the
doc\PapersAndPresentations\MadridFY10-ICATT folder.

[2] Darrel J. Conway, Writing a GMAT Plug-in, July 24, 2008. Available in the GMAT Subversion repository,
in the doc\SystemDocs\PluginDevelopment folder.

[3] The GMAT Development Team, The GMAT Architectural Specification, (March 2008).

[4] Darrel J. Conway, Compiling GMAT using Visual Studio 2010, August 9, 2012. Available in the GMAT
Subversion repository, in the doc\DeveloperDocs\CompilingGmatWithVS2010 folder.

[5] Thomas Grubb, Draft documentation, October 2012.

16

