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Optimal Lunar Flyby using Multiple 
Shooting  

 
Audience Advanced 

Length 75 minutes 

Prerequisites Complete Simulating an Orbit, Simple Orbit Transfer, Mars B-Plane Targeting 
tutorial and take GMAT Fundamentals training course or watch videos. 

Script Files Tut_DesignlLunarFlyby.script 

Required Plugins VF13ad (proprietary) 
 

Objective and Overview 
 
 
  Note 

 
For highly elliptic earth orbits (HEO), it is often cheaper to use the Moon’s gravity to raise 

periapsis or to perform plane changes, than it is to use the spacecraft’s propulsion resources.  

However, designing lunar flybys to achieve multiple specific mission constraints is non-trivial 

and requires modern optimization techniques to minimize fuel usage while simultaneously 

satisfying trajectory constraints.  In this tutorial, you will learn how to design flyby trajectories 

by writing a GMAT script to perform multiple shooting optimization.   As the analyst, your 

goal is to design a lunar flyby that provides a mission orbit periapsis of 15 Re and changes the 

inclination of the mission orbit to 10 degrees.  (Note: There are other mission constraints that 

will be discussed in more detail below.) 

 

To efficiently solve the problem, we will employ the Multiple Shooting Method to break down 

the sensitive boundary value problem into smaller, less sensitive problems.  We will employ 

three trajectory segments.  The first segment will begin at Transfer Orbit Insertion (TOI) and 

will propagate forward; the second segment is centered at lunar periapsis and propagates both 

forward and backwards.  The third segment is centered on Mission Orbit Insertion (MOI) and 

propagates forward and backwards.   See figures 1-3 that illustrate the final orbit solution and 

the “Control Points” and “Patch Points” used to solve the problem. 

 
 
To begin this tutorial we start with several views of the solution to provide a physical understanding of the 

problem.  In Fig. 1, an illustration of a lunar flyby is shown with the trajectory displayed in red and the Moon’s 

orbit displayed in yellow.  The Earth is at the center of the frame.  We require that the following constraints are 

satisfied at TOI: 

 The spacecraft is at orbit perigee 

 The spacecraft is at an altitude of 285 km. 

 The inclination of the transfer orbit is 28.5 degrees.  

At lunar flyby, we only require that the flyby altitude is greater than 100 km.  This constraint is satisfied 

implicitly so we will not explicitly script this constraint.  An insertion maneuver is performed at earth perigee 

after the lunar flyby to insert into the mission orbit.  The following constraints must be satisfied after MOI. 

 The mission orbit perigee is 15 Re 

 The mission orbit apogee is 60 Re 

 The mission orbit inclination is 10 deg. 
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Note: Phasing with the moon is important for these orbits but design considerations for lunar phasing are 

beyond the scope of this tutorial. 

 

 

 
Figure 1: View of Lunar Flyby from Normal to Earth Equator 

 

 

 
Figure 2:  View of Lunar Flyby Geometry 

 

Figure 3 illustrates the mission timeline and how control points and patch points are defined.  Control points are 

drawn using a solid blue circle and are defined as locations where the state of the spacecraft is treated as an 

optimization variable.  Patch points are drawn with an empty blue circle and are defined as locations where 

position and/or velocity continuity is enforced.  For this tutorial, we place control points at TOI, the lunar flyby 

and MOI. At each control point, the six Cartesian state elements, and the epoch are varied for a total of 18 
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optimization variables.  At the MOI control point, there is an additional optimization variable for the delta V to 

lower apoapsis to mission altitude.   

 

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 3: Definition of Control Points and Patch Points 
 
Notice that while there are only three control points, we have 5 segments (which will result in 5 spacecraft).  The 

state at the lunar flyby, which is defined as a control point, is propagated backwards to a patch point and 

forwards to a patch point.  The same occurs for the MOI control point.    

 

To design this trajectory, you will need to create the following GMAT resources. 

 
1. Create a Moon-centered coordinate system 
2. Create 5 spacecraft required for modeling segments 
3. Create an Earth-centered and a Moon-centered propagator. 
4. Create an impulsive maneuver 
5. Create many user variables for use in the script  
6. Create A VF13ad optimizer 
7. Create plots for tracking the optimization process 

 
After creating the resources using script snippets you will construct the optimization sequence using a 
GMAT script.   Pseudo-code for the optimization sequence is shown below.  
 

 
 
 
 
 
 

Define optimization initial guesses 

Initialize variables 

Optimize 

      Loop initializations 

      Vary control point epochs 

      Set epochs on spacecraft 

      Vary control point state values 

      Configure/initialize spacecraft  

      Apply constraints on initial control points (i.e before propagation) 

      Propagate spacecraft 

      Apply patch point constraints 

      Apply constraints on mission orbit 

      Apply cost function 

EndOptimize 

Transfer Orbit 

Insertion (TOI) 

Lunar Flyby Mission Orbit 

Insertion (MOI) 

Control point (CP) 

Patch point (PP) 
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After constructing the basic optimization sequence we will perform the following steps: 
 

1. Run the sequence and analyze the initial guess 
2. Run the optimizer satisfying only the patch point constraints 
3. Turn on the mission orbit constraints and find a feasible solution 
4. Use the feasible solution as the initial guess and find an optimal solution 
5. Apply an altitude constraint at lunar orbit periapsis 

 
Let’s get started. 
 

Configure Coordinate Systems, Spacecraft, Optimizer, Propagators, 
Maneuvers, Variables, and Graphics  
 

For this tutorial, you’ll need GMAT open, with a blank script editor open. To open a blank script 

editor, click the New Script button in the toolbar.   

 

Create a Moon-centered Coordinate System 
 

You will need a Moon-centered CoordinateSystem for the lunar flyby control point so we 

begin by creating an inertial system centered at the moon.  Use the MJ2000Eq axes for this 

system. 

 

 
 

Note when you paste in subsequent script snippets they must be placed before the 

BeginMissionSequence command 

 
Create the Spacecraft 
 
You will need 5 Spacecraft for this mission design.  The epoch and state information will be 

set in the mission sequence and here we only need to configure coordinate systems for the 

Spacecraft. The Spacecraft named satTOI models the transfer orbit through the first 

patch point.  Use the EarthMJ200Eq CoordinateSystem for satTOI.  

satFlyBy_Forward and satFlyBy_Backward model the trajectory from the flyby 

forward to patch point 1 and backward to patch point 2 respectively.  Use the 

MoonMJ2000Eq CoordinateSystem for satFlyBy_Forward and 

satFlyBy_Backward. Similarly, satMOI_Forward and satMOI_Backward model the 

trajectory on either side of the MOI maneuver.  Use the EarthMJ2000Eq 

CoordinateSystem for satMOI_Forward and satMOI_Backward. 

 
 
 

%------------------------------------------------------------------------- 

% Configure coordinate systems 

%------------------------------------------------------------------------- 

 

Create CoordinateSystem MoonMJ2000Eq 

MoonMJ2000Eq.Origin = Luna 

MoonMJ2000Eq.Axes   = MJ2000Eq 

 

BeginMissionSequence 
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Create the Propagators 
 

Modeling the motion of the spacecraft when near the Earth and near the moon requires two 

propagators; one Earth-centered, and one Moon-centered.  The script below configures the 

ForceModel named NearEarthForceModel to use JGM-2 8x8 harmonic gravity model, with 

point mass perturbations from the Sun and Moon, and the SRP perturbation.  The ForceModel 

named NearMoonForceModel is similar but uses point mass gravity for all bodies and includes 

SRP.  Note that the integrators are configured for performance and not for accuracy to 

improve run times for the tutorial.  There are times when integrator accuracy can cause issues 

with optimizer performance due to noise in the numerical solutions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

%------------------------------------------------------------------------- 

% Configure spacecraft 

%------------------------------------------------------------------------- 

%  The TOI control point 

Create Spacecraft satTOI 

satTOI.DateFormat                  = TAIModJulian 

satTOI.CoordinateSystem            = EarthMJ2000Eq 

 

%  Flyby control point 

Create Spacecraft satFlyBy_Forward 

satFlyBy_Forward.DateFormat        = TAIModJulian 

satFlyBy_Forward.CoordinateSystem  = MoonMJ2000Eq 

 

%  Flyby control point 

Create Spacecraft satFlyBy_Backward 

satFlyBy_Backward.DateFormat       = TAIModJulian 

satFlyBy_Backward.CoordinateSystem = MoonMJ2000Eq 

 

% MOI control point 

Create Spacecraft satMOI_Backward 

satMOI_Backward.DateFormat         = TAIModJulian 

satMOI_Backward.CoordinateSystem   = EarthMJ2000Eq 

 

% MOI control point 

Create Spacecraft satMOI_Forward 

satMOI_Forward.DateFormat          = TAIModJulian 

satMOI_Forward.CoordinateSystem    = EarthMJ2000Eq 
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Create the Maneuvers 
 

We will require one ImpulsiveBurn to insert the spacecraft into the mission orbit.  Define the 

maneuver as MOI and configure the maneuver to be applied in the VNB (Earth-referenced) Axes. 

 

 
 

%------------------------------------------------------------------------ 

% Configure propagators and force models 

%------------------------------------------------------------------------- 

 

Create ForceModel NearEarthForceModel 

NearEarthForceModel.CentralBody               = Earth 

NearEarthForceModel.PrimaryBodies             = {Earth} 

NearEarthForceModel.PointMasses               = {Luna, Sun} 

NearEarthForceModel.SRP                       = On 

NearEarthForceModel.GravityField.Earth.Degree = 8 

NearEarthForceModel.GravityField.Earth.Order  = 8 

 

Create ForceModel NearMoonForceModel 

NearMoonForceModel.CentralBody                = Luna 

NearMoonForceModel.PointMasses                = {Luna, Earth, Sun} 

NearMoonForceModel.Drag                       = None 

NearMoonForceModel.SRP                        = On 

Create Propagator NearEarthProp 

NearEarthProp.FM = NearEarthForceModel 

NearEarthProp.Type                     = PrinceDormand78 

NearEarthProp.InitialStepSize          = 60 

NearEarthProp.Accuracy                 = 1e-11 

NearEarthProp.MinStep                  = 0.0 

NearEarthProp.MaxStep                  = 86400 

 

Create Propagator NearMoonProp 

NearMoonProp.FM                        = NearMoonForceModel 

NearMoonProp.Type                      = PrinceDormand78 

NearMoonProp.InitialStepSize           = 60 

NearMoonProp.Accuracy                  = 1e-11 

NearMoonProp.MinStep                   = 0 

NearMoonProp.MaxStep                   = 86400 

%-------------------------------------------------------------------------

% Configure maneuvers 

%------------------------------------------------------------------------- 

Create ImpulsiveBurn MOI 

MOI.CoordinateSystem   = Local 

MOI.Origin             = Earth 

MOI.Axes               = VNB 
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Create the User Variables 
 

The optimization sequence requires many user variables that will be discussed in detail later in 

the tutorial when we define those variables.  For now, we simply create the variables (which 

initializes them to zero).  The naming convention used here is that variables used to define 

constraint values begin with “con”.  For example, the variable used to define the constraint on 

TOI inclination is called conTOIInclination.  Variables beginning with “error” are used to 

compute constraint variances.  For example, the variable used to define the error in MOI 

inclination is called errorMOIInclination. 

 

 
 

Create the Optimizer 
 
The script below creates a VF13ad optimizer provided in the Harwell Subroutine Library.  

VF13ad is an Sequential Quadratic Programming (SQP) optimizer that uses a line search 

method to solve the Non-linear Programming Problem (NLP).  Here we configure the 

optimizer to use forward differencing to compute the derivatives, set the maximum iterations 

to 200, and define convergence tolerances. 

 
 

 

 

 

 

 

 

 

 

 

%-------------------------------------------------------------------------

% Create user data: variables, arrays, strings 

%------------------------------------------------------------------------- 

 

%  Variables for defining constraint values 

Create Variable conTOIPeriapsis conMOIPeriapsis conTOIInclination 

Create Variable conLunarPeriapsis conMOIApoapsis conMOIInclination 

Create Variable launchRdotV finalPeriapsisValue 

 

%  Variables for computing constraint violations 

Create Variable errorPos1 errorVel1 errorPos2 errorVel2  

Create Variable errorMOIRadApo errorMOIRadPer errorMOIInclination  

 

%  Variables for managing time calculations 

Create Variable patchTwoElapsedDays patchOneEpoch patchTwoEpoch refEpoch 

Create Variable toiEpoch flybyEpoch moiEpoch patchOneElapsedDays 

Create Variable deltaTimeFlyBy 

 

%  Constants and miscellaneous variables 

Create Variable earthRadius earthMu launchEnergy launchVehicleDeltaV 

Create Variable toiDeltaV launchCircularVelocity loopIdx Cost 
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Create the 3-D Graphics 
 
You will need an OrbitView 3-D graphics window to visualize the trajectory and especially the 

initial guess. Below we configure an orbit view to view the entire trajectory in the 

EarthMJ2000Eq coordinate system. Note that we must add all five Spacecraft to the 

OrbitView. Updating an OrbitView during optimization can dramatically slow down the 

optimization process and they are best used to check initial configuration and then use XY 

plots to track numerical progress.  Later in the tutorial, we will toggle the ShowPlot field to 

false once we have verified the initial configuration is correct. 

 

 
 

 
 

%------------------------------------------------------------------------- 

% Configure solvers 

%------------------------------------------------------------------------- 

 

Create VF13ad NLPOpt 

NLPOpt.ShowProgress          = true 

NLPOpt.ReportStyle           = Normal 

NLPOpt.ReportFile            = 'VF13adVF13ad1.data' 

NLPOpt.MaximumIterations     = 200 

NLPOpt.Tolerance             = 1e-004 

NLPOpt.UseCentralDifferences = false 

NLPOpt.FeasibilityTolerance  = 0.1 

%------------------------------------------------------------------------- 

% Configure plots, reports, etc. 

%------------------------------------------------------------------------- 

 

Create OrbitView EarthView 

EarthView.ShowPlot               = true 

EarthView.SolverIterations       = All 

EarthView.UpperLeft       = [ 0.4960127591706539 0.00992063492063492 ]; 

EarthView.Size            = [ 0.4800637958532695 0.5218253968253969 ]; 

EarthView.RelativeZOrder         = 501 

EarthView.Add                    = {satTOI, satFlyBy_Forward, 

satFlyBy_Backward, satMOI_Backward, Earth, Luna, satMOI_Forward} 

EarthView.CoordinateSystem       = EarthMJ2000Eq 

EarthView.DrawObject             = [ true true true true true] 

EarthView.OrbitColor   = [ 255 32768 1743054 16776960 32768 12632256 

14268074 ] 

EarthView.TargetColor  = [ 65280 124 4227327 255 12345 9843 16711680 ]; 

EarthView.DataCollectFrequency   = 1 

EarthView.UpdatePlotFrequency    = 50 

EarthView.NumPointsToRedraw      = 300 

EarthView.ViewScaleFactor        = 35 

EarthView.ViewUpAxis             = X 

EarthView.UseInitialView         = On 
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Create XPPlots/Reports 
 
Below we create several XYPlots and a ReportFile.   We will use XYPlots to monitor the 

progress of the optimizer in satisfying constraints.  PositionError plots the position error at 

the patch points. VelocityError plots the velocity error at the patch points. OrbitDimErrors 

plots the errors in the periapsis and apoapsis radii for the mission orbit. 

When optimization is proceeding as expected, these plots should show errors 

driven to zero. 

 

 
 

 

Create XYPlot PositionError 

PositionError.SolverIterations = All 

PositionError.UpperLeft        = [ 0.02318840 0.4358208955223881 ]; 

PositionError.Size             = [ 0.45942028 0.5283582089552239 ]; 

PositionError.RelativeZOrder   = 378 

PositionError.XVariable        = loopIdx 

PositionError.YVariables       = {errorPos1, errorPos2} 

PositionError.ShowGrid         = true 

PositionError.ShowPlot         = true 

 

Create XYPlot VelocityError 

VelocityError.SolverIterations = All 

VelocityError.UpperLeft        = [ 0.0246376 0.01194029850746269 ]; 

VelocityError.Size             = [ 0.4565217 0.4208955223880597 ]; 

VelocityError.RelativeZOrder   = 410 

VelocityError.XVariable        = loopIdx 

VelocityError.YVariables       = {errorVel1, errorVel2} 

VelocityError.ShowGrid         = true 

VelocityError.ShowPlot         = true 

 

Create XYPlot OrbitDimErrors 

OrbitDimErrors.SolverIterations = All 

OrbitDimErrors.UpperLeft      = [ 0.4960127591706539 0.5337301587301587 ]; 

OrbitDimErrors.Size           = [ 0.481658692185008 0.4246031746031746 ]; 

OrbitDimErrors.RelativeZOrder = 347 

OrbitDimErrors.XVariable      = loopIdx 

OrbitDimErrors.YVariables     = {errorMOIRadApo, errorMOIRadPer} 

OrbitDimErrors.ShowGrid       = true 

OrbitDimErrors.ShowPlot       = true 

 

Create XYPlot IncError 

IncError.SolverIterations = All 

IncError.UpperLeft        = [ 0.4953586497890296 0.01306240928882438 ]; 

IncError.Size             = [ 0.479324894514768 0.5079825834542816 ]; 

IncError.RelativeZOrder   = 382 

IncError.YVariables       = {errorMOIInclination} 

IncError.XVariable        = loopIdx 

IncError.ShowGrid         = true 

IncError.ShowPlot         = true 
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Create a ReportFile to allow reporting of useful information to a text file for review after the 

optimization process is complete. 

 

 
 

Configure the Mission Sequence 
 

Overview of the Mission Sequence 
 

Now that the resources are created and configured, we will construct the optimization 

sequence.  Pseudo-script for the optimization sequence is shown below.  We will start by 

defining initial guesses for the control point optimization variables.  Next, selected variables are 

initialized.  Take some time and study the structure of the optimization loop before moving on 

to the next step.  

 

 
 
 

Define Initial Guesses 
 

Below we define initial guesses for the optimization variables.  Initial guesses are often difficult 

to generate and to ensure you can take this tutorial we have provided a reasonable initial guess 

for this problem.  You can use GMAT to produce initial guesses and the sample script named 

Ex_GivenEpochGoToTheMoon distributed with GMAT can be used for that purpose for this 

tutorial.   

 

The time variables toiEpoch, flybyEpoch and moiEpoch are the TAI modified Julian epochs 

of the TOI, flyby, and MOI.  It is not obvious yet that these are TAI modified Julian epochs, 

Create ReportFile debugData 

debugData.SolverIterations = Current 

debugData.Precision        = 16 

debugData.WriteHeaders     = Off 

debugData.LeftJustify      = On 

debugData.ZeroFill         = Off 

debugData.ColumnWidth      = 20 

debugData.WriteReport      = false 

Define optimization initial guesses 

Initialize variables 

Optimize 

      Loop initializations 

      Vary control point epochs 

      Set epochs on spacecraft 

      Vary control point state values 

      Set state values on spacecraft  

      Apply constraints on control points (i.e before propagation) 

      Propagate spacecraft 

      Apply patch point constraints (i.e. after propagation) 

      Apply constraints on mission orbit 

      Apply cost function 

EndOptimize 
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but later we use statements like this to set the epoch:  satTOI.Epoch.TAIModJulian = 

toiEpoch.  Recall that we previously set up the spacecraft to used coordinate systems 

appropriate to the problem.   Setting satTOI.X sets the quantity in EarthMJ2000Eq and 

satFlyBy_Forward.X sets the quantity in MoonMJ2000Eq because of the configuration of the 

spacecraft. 

 

 
 

Initialize Variables 
 

The script below is used to define some constants and to define the values for various 

constraints applied to the trajectory.  Pay particular attention to the constraint  values and time 

values.  For example, the variable conTOIPeriapsis defines the periapsis radius at 

TOI constraint to be at about 285 km (geodetics will cause altitude to vary slightly).  The 

variable conMOIApoapsis defines the mission orbit apoapsis to be 60 earth radii.  The variables 

patchOneElapsedDays, patchTwoElapsedDays, and refEpoch are particularly important as 

they define the epochs of the patch points later in the script using lines like this 

patchOneEpoch = refEpoch + patchOneElapsedDays  The preceding line defines the epoch 

of the first patch point to be one day after refEpoch (refEpoch is set to toiEpoch).  Similarly, 

the epoch of the second patch point is defined as 13 days after refEpoch.  Note, the patch 

point epochs can be treated as optimization variables but that was not done to reduce 

complexity of the tutorial.      

BeginMissionSequence 

 

%  Define initial guesses for optimization variables 

BeginScript 'Initial Guess Values' 

 

   toiEpoch = 27698.1612435 

   flybyEpoch = 27703.7658714 

   moiEpoch = 27723.305398 

   satTOI.X = -6651.70273964 

   satTOI.Y = -229.327053112 

   satTOI.Z = -168.396030559 

   satTOI.VX = 0.26826479315 

   satTOI.VY = -9.54041067213 

   satTOI.VZ = 5.17141415746 

   satFlyBy_Forward.X = 869.478955662 

   satFlyBy_Forward.Y = -6284.76679557 

   satFlyBy_Forward.Z = -3598.47087228 

   satFlyBy_Forward.VX = 1.14619150302 

   satFlyBy_Forward.VY = -0.73648611256 

   satFlyBy_Forward.VZ = -0.624051812914 

   satMOI_Backward.X = -53541.9703742 

   satMOI_Backward.Y = -68231.6310266 

   satMOI_Backward.Z = -1272.76362793 

   satMOI_Backward.VX = 2.051823425 

   satMOI_Backward.VY = -1.91406286218 

   satMOI_Backward.VZ = -0.280408526046 

   MOI.Element1 = -0.0687322937282    

 

EndScript 
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Vary and Set Spacecraft Epochs 
 

Now we will write the commands that vary the control point epochs and apply those epochs to 

the spacecraft.  The first three script lines below define toiEpoch, flybyEpoch, and moiEpoch 

to be optimization variables.  It is important to note that when a Vary command is written like 

this 

 

Vary NLPOpt(toiEpoch = toiEpoch, . . . 
 

that you are telling the optimizer to vary toiEpoch (the RHS of the equal sign), and to use as 

the initial guess the value contained in toiEpoch when the command is first executed.  This 

will allow us to easily change initial guess values and perform “Apply Corrections” via the script 

interface which will be shown later. Continuing with the script explanation, the last five lines 

below set the epochs of the spacecraft and set up the patch point epochs.  

%  Define constants and configuration settings 

BeginScript 'Constants and Init' 

    

   %  Some constants 

   earthRadius         = 6378.1363 

       

   %  Define constraint values and other constants  

   conTOIPeriapsis     = 6378 + 285   % constraint on launch periapsis 

   conTOIInclination   = 28.5         % constraint launch inclination 

   conLunarPeriapsis   = 8000         % constraint on flyby altitude 

   conMOIApoapsis      = 60*earthRadius  % constraint on mission apoapsis 

   conMOIInclination   = 10              % constraint on mission inc. 

   conMOIPeriapsis     = 15*earthRadius  % constraint on mission periapsis 

   patchOneElapsedDays = 1               % define epoch of patch 1 

   patchTwoElapsedDays = 13              % define epoch of patch 2 

   refEpoch            = toiEpoch     % ref. epoch for time quantities 

    

EndScript 

 

%  The optimization loop 

Optimize 'Optimize Flyby' NLPOpt {SolveMode = Solve, ExitMode = 

DiscardAndContinue} 

    

   %   Loop initializations 

   loopIdx = loopIdx + 1 

    

EndOptimize 

 

               

Caution:  In the above script snippet, we have included the EndOptimize command so that 

your script will continue to build while we construct the optimization sequence. You must 

paste subsequence script snippets inside of the optimization loop.   



Tutorials Optimal Lunar Flyby using Multiple Shooting 

13 

 

 

 

 
 

Vary Control Point States 
 

The script below defines the control point optimization variables and defines the initial guess 

values for each optimization variable. For example, the following line  

 
Vary NLPOpt(satTOI.X            = satTOI.X, {Perturbation = 0.00001, MaxStep = 100}) 

 

tells GMAT to vary the X Cartesian value of satTOI using as the initial guess the value of 

satTOI.X at initial command execution.  The Perturbation used to compute derivatives is 

0.00001 and the optimizer will not take steps larger than 100 for this variable.  Note: units of 

settings like Perturbation are the same as the unit for the optimization variable. 

 

Notice the lines at the bottom of this script snippet that look like this:  

 

satFlyBy_Backward = satFlyBy_Forward 
 

This line assigns an entire spacecraft to another spacecraft.  Because we are varying one control 

point in the middle of a segment, this assignment allows us to conveniently set the second 

spacecraft without independently varying its state properties.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

   %  Vary the epochs  

   Vary NLPOpt(toiEpoch    = toiEpoch, {Perturbation = 0.0001, MaxStep = 0.5}) 

   Vary NLPOpt(flybyEpoch  = flybyEpoch, {Perturbation = 0.0001, MaxStep = 0.5}) 

   Vary NLPOpt(moiEpoch    = moiEpoch, {Perturbation = 0.0001, MaxStep = 0.5}) 

 

   %  Configure epochs and spacecraft 

   satTOI.Epoch.TAIModJulian           = toiEpoch 

   satMOI_Backward.Epoch.TAIModJulian  = moiEpoch 

   satFlyBy_Forward.Epoch.TAIModJulian = flybyEpoch 

   patchOneEpoch                       = refEpoch + patchOneElapsedDays 

   patchTwoEpoch                       = refEpoch + patchTwoElapsedDays    
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Apply Constraints at Control Points 
 

Now that the control points have been set, we can apply constraints that occur at the control 

points (i.e. before propagation to the patch point).  Notice below that the 

NonlinearContraint commands are commented out.  We will uncomment those constraints 

later.  The commands below, when uncommented, will apply constraints on the launch 

inclination, the launch periapsis radius, the mission orbit periapsis, and the last constraint 

ensures that TOI occurs at periapsis of the transfer orbit.    

 

 

 

 

 

 

   %  Vary the states and delta V 

   Vary NLPOpt(satTOI.   = satTOI.X, {Perturbation = 0.00001, MaxStep = 100}) 

   Vary NLPOpt(satTOI.Y  = satTOI.Y, {Perturbation = 0.000001, MaxStep = 100}) 

   Vary NLPOpt(satTOI.Z  = satTOI.Z, {Perturbation = 0.00001, MaxStep = 100}) 

   Vary NLPOpt(satTOI.VX = satTOI.VX, {Perturbation = 0.00001, MaxStep = 0.05}) 

   Vary NLPOpt(satTOI.VY = satTOI.VY, {Perturbation = 0.000001, MaxStep = 0.05}) 

   Vary NLPOpt(satTOI.VZ = satTOI.VZ, {Perturbation = 0.000001, MaxStep = 0.05}) 

   Vary NLPOpt(satFlyBy_Forward.X  = satFlyBy_Forward.MoonMJ2000Eq.X,   

{Perturbation = 0.00001, MaxStep = 100}) 

   Vary NLPOpt(satFlyBy_Forward.Y  = satFlyBy_Forward.MoonMJ2000Eq.Y, 

{Perturbation = 0.00001, MaxStep = 100}) 

   Vary NLPOpt(satFlyBy_Forward.Z  = satFlyBy_Forward.MoonMJ2000Eq.Z, 

{Perturbation = 0.00001, MaxStep = 100}) 

   Vary NLPOpt(satFlyBy_Forward.VX = satFlyBy_Forward.MoonMJ2000Eq.VX, 

{Perturbation = 0.00001, MaxStep = 0.1}) 

   Vary NLPOpt(satFlyBy_Forward.VY = satFlyBy_Forward.MoonMJ2000Eq.VY, 

{Perturbation = 0.00001, MaxStep = 0.1}) 

   Vary NLPOpt(satFlyBy_Forward.VZ = satFlyBy_Forward.MoonMJ2000Eq.VZ, 

{Perturbation = 0.00001, MaxStep = 0.1}) 

   Vary NLPOpt(satMOI_Backward.X   = satMOI_Backward.X, {Perturbation = 0.000001, 

MaxStep = 40000}) 

   Vary NLPOpt(satMOI_Backward.Y   = satMOI_Backward.Y, {Perturbation = 0.000001, 

MaxStep = 40000}) 

   Vary NLPOpt(satMOI_Backward.Z   = satMOI_Backward.Z, {Perturbation = 0.000001, 

MaxStep = 40000}) 

   Vary NLPOpt(satMOI_Backward.VX  = satMOI_Backward.VX, {Perturbation = 0.00001, 

MaxStep = 0.1}) 

   Vary NLPOpt(satMOI_Backward.VY  = satMOI_Backward.VY, {Perturbation = 0.00001, 

MaxStep = 0.1}) 

   Vary NLPOpt(satMOI_Backward.VZ  = satMOI_Backward.VZ, {Perturbation = 0.00001, 

MaxStep = 0.1}) 

   Vary NLPOpt(MOI.Element1        = MOI.Element1, {Perturbation = 0.0001, 

MaxStep = 0.005}) 

    

   %  Initialize spacecraft and do some reporting 

   satFlyBy_Backward = satFlyBy_Forward 

   satMOI_Forward    = satMOI_Backward 

   deltaTimeFlyBy    = flybyEpoch - toiEpoch 
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Propagate the Segments 
 

We are now ready to propagate the spacecraft to the patch points.  We must propagate satTOI 

forward to patchOneEpoch, propagate satFlyBy_Backward backwards to patchOneEpoch, 

propagate satFlyBy_Forward forward to patchTwoEpoch, and propagate satMOI_Backward 

backward to patchTwoEpoch.  Notice that some Propagate commands are applied inside of 

If statements to ensure that propagation is performed in the correct direction.  

 

If satFlyBy_Forward.TAIModJulian > patchTwoEpoch 

      Propagate BackProp NearMoonProp(satFlyBy_Forward) . . . 

   Else 

      Propagate NearMoonProp(satFlyBy_Forward) . . . 

EndIf 

 

In the script below, you will notice syntax like this: 

 

Propagate NearEarthProp(satTOI) {satTOI.TAIModJulian = patchOneEpoch, … 

PenUp EarthView    %  The next three lines handle plot epoch discontinuity  

Propagate BackProp NearMoonProp(satFlyBy_Backward) 

PenDown EarthView   

 

These lines are used to clean up discontinuities in the OrbitView that occur because we are 

making discontinuous changes to time in this complex script. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   %  Apply constraints on initial states 

   %NonlinearConstraint NLPOpt(satTOI.INC=conTOIInclination) 

   %NonlinearConstraint NLPOpt(satTOI.RadPer=conTOIPeriapsis) 

   %NonlinearConstraint NLPOpt(satMOI_Backward.RadPer = conMOIPeriapsis) 

   errorMOIRadPer = satMOI_Backward.RadPer - conMOIPeriapsis 

    

   %  This constraint ensures that satTOI state is at periapsis at TOI 

   launchRdotV = (satTOI.X *satTOI.VX + satTOI.Y *satTOI.VY + satTOI.Z 

*satTOI.VZ)/1000 

   %NonlinearConstraint NLPOpt(launchRdotV=0) 



Tutorials Optimal Lunar Flyby using Multiple Shooting 

16 

 

 

 

 
 

Compute Some Quantities and Apply Patch Constraints 
 

The variables errorPos1 and others below are used in XYPlots to display position and 

velocity errors at the patch points. 

 

 

 

 

 

 

 

 

 

 

 

 

%  Propagate the segments 

   Propagate NearEarthProp(satTOI) {satTOI.TAIModJulian = patchOneEpoch, 

StopTolerance = 1e-005} 

   PenUp EarthView    %  The next three lines handle epoch discontinuity 

in plotting 

   Propagate BackProp NearMoonProp(satFlyBy_Backward) 

   PenDown EarthView   

   Propagate BackProp NearMoonProp(satFlyBy_Backward) 

{satFlyBy_Backward.TAIModJulian = patchOneEpoch, StopTolerance = 1e-005} 

    

   %  Propagate FlybySat to Apogee and apply apogee constraints 

   PenUp EarthView    %  The next three lines handle epoch discontinuity 

in plotting 

   Propagate NearMoonProp(satFlyBy_Forward) 

   PenDown EarthView 

   Propagate NearMoonProp(satFlyBy_Forward) 

{satFlyBy_Forward.Earth.Apoapsis, StopTolerance = 1e-005} 

   Report debugData satFlyBy_Forward.RMAG 

  

   %  Propagate FlybSat and satMOI_Backward to patchTwoEpoch 

   If satFlyBy_Forward.TAIModJulian > patchTwoEpoch 

      Propagate BackProp NearMoonProp(satFlyBy_Forward) 

{satFlyBy_Forward.TAIModJulian = patchTwoEpoch, StopTolerance = 1e-005} 

   Else 

      Propagate NearMoonProp(satFlyBy_Forward) 

{satFlyBy_Forward.TAIModJulian = patchTwoEpoch, StopTolerance = 1e-005} 

   EndIf 

   PenUp EarthView    %  The next three lines handle epoch discontinuity 

in plotting 

   Propagate BackProp NearMoonProp(satMOI_Backward) 

   PenDown EarthView 

   Propagate BackProp NearMoonProp(satMOI_Backward) 

{satMOI_Backward.TAIModJulian = patchTwoEpoch, StopTolerance = 1e-005} 
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Apply Patch Point Constraints 
 

The NonlinearConstraint commands below apply the patch point constraints. 

 

 
 

Apply Constraints on Mission Orbit 
 

We can now apply constraints on the final mission orbit that cannot be applied until after 

propagation.  The script snippet below applies the inclination constraint on the final mission 

orbit, and applies the apogee radius constraint on the final mission orbit after MOI is applied. 

 

   %  Compute constraint errors for plots 

   errorPos1 = sqrt((satTOI.X - satFlyBy_Backward.X)^2 + (satTOI.Y - 

satFlyBy_Backward.Y)^2 + (satTOI.Z - satFlyBy_Backward.Z)^2) 

   errorVel1 = sqrt((satTOI.VX - satFlyBy_Backward.VX)^2 + (satTOI.VY - 

satFlyBy_Backward.VY)^2 + (satTOI.VZ - satFlyBy_Backward.VZ)^2) 

   errorPos2 = sqrt((satMOI_Backward.X - satFlyBy_Forward.X)^2 + 

(satMOI_Backward.Y - satFlyBy_Forward.Y)^2 + (satMOI_Backward.Z - 

satFlyBy_Forward.Z)^2) 

   errorVel2 = sqrt((satMOI_Backward.VX - satFlyBy_Forward.VX)^2 + 

(satMOI_Backward.VY - satFlyBy_Forward.VY)^2 + (satMOI_Backward.VZ - 

satFlyBy_Forward.VZ)^2) 

    

   %  Apply the collocation constraints on final states 

   NonlinearConstraint 

NLPOpt(satTOI.EarthMJ2000Eq.X=satFlyBy_Backward.EarthMJ2000Eq.X) 

   NonlinearConstraint 

NLPOpt(satTOI.EarthMJ2000Eq.Y=satFlyBy_Backward.EarthMJ2000Eq.Y) 

   NonlinearConstraint 

NLPOpt(satTOI.EarthMJ2000Eq.Z=satFlyBy_Backward.EarthMJ2000Eq.Z) 

   NonlinearConstraint 

NLPOpt(satTOI.EarthMJ2000Eq.VX=satFlyBy_Backward.EarthMJ2000Eq.VX) 

   NonlinearConstraint 

NLPOpt(satTOI.EarthMJ2000Eq.VY=satFlyBy_Backward.EarthMJ2000Eq.VY) 

   NonlinearConstraint 

NLPOpt(satTOI.EarthMJ2000Eq.VZ=satFlyBy_Backward.EarthMJ2000Eq.VZ) 

   NonlinearConstraint 

NLPOpt(satMOI_Backward.EarthMJ2000Eq.X=satFlyBy_Forward.EarthMJ2000Eq.X) 

   NonlinearConstraint 

NLPOpt(satMOI_Backward.EarthMJ2000Eq.Y=satFlyBy_Forward.EarthMJ2000Eq.Y) 

   NonlinearConstraint 

NLPOpt(satMOI_Backward.EarthMJ2000Eq.Z=satFlyBy_Forward.EarthMJ2000Eq.Z) 

   NonlinearConstraint 

NLPOpt(satMOI_Backward.EarthMJ2000Eq.VX=satFlyBy_Forward.EarthMJ2000Eq.VX) 

   NonlinearConstraint 

NLPOpt(satMOI_Backward.EarthMJ2000Eq.VY=satFlyBy_Forward.EarthMJ2000Eq.VY) 

   NonlinearConstraint 

NLPOpt(satMOI_Backward.EarthMJ2000Eq.VZ=satFlyBy_Forward.EarthMJ2000Eq.VZ) 
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Apply Cost Function 
 

The last script snippet applies the cost function and a Stop command.  The Stop command is 

so that we can QA your script configuration and make sure the initial guess is providing 

reasonable results before attempting optimization 

 

 
 

 
 
 
 
 
 
 
 

   %  Apply mission orbit constraints and others on segments after 

propagation 

   errorMOIInclination = satMOI_Forward.INC - conMOIInclination 

   %NonlinearConstraint NLPOpt(satMOI_Forward.EarthMJ2000Eq.INC = 

conMOIInclination) 

      %  Propagate satMOI_Forward to apogee 

   PenUp EarthView    %  The next three lines handle epoch discontinuity 

in plotting 

   Propagate NearEarthProp(satMOI_Forward) 

   PenDown EarthView 

   If satMOI_Forward.Earth.TA > 180 

      Propagate NearEarthProp(satMOI_Forward) 

{satMOI_Forward.Earth.Periapsis} 

   Else 

      Propagate BackProp NearEarthProp(satMOI_Forward) 

{satMOI_Forward.Earth.Periapsis} 

   EndIf 

   Maneuver MOI(satMOI_Forward) 

   Propagate NearEarthProp(satMOI_Forward) {satMOI_Forward.Earth.Apoapsis} 

   %NonlinearConstraint NLPOpt(satMOI_Forward.RadApo=conMOIApoapsis) 

   errorMOIRadApo = satMOI_Forward.Earth.RadApo - conMOIApoapsis 

   %  Apply cost function and  

   Cost = sqrt( MOI.Element1^2 + MOI.Element2^2 + MOI.Element3^2) 

   %Minimize NLPOpt(Cost) 

    

   %  Report stuff at the end of the loop 

   Report debugData MOI.Element1 

   Report debugData satMOI_Forward.RMAG conMOIApoapsis conMOIInclination 

    

   Stop    
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Configure the Mission Sequence 
 

Overview 
 

We are now ready to design the trajectory.  We’ll do this in a couple of steps:  

 

1. Run the script configuration and verify your configuration. 

2. Run the mission applying only the patch point constraints to provide a smooth 

trajectory. 

3. Run the mission with all constraints applied generating an optimal solution. 

4. Run the mission with an alternative initial guess. 

5. Add a new constraint and rerun the mission. 

 

Step 1: Verify Your Configuration 
 

If your script is configured correctly, when you click “Save-Sync-Run” in the bottom of the 

script editor, you should see an OrbitView graphics window display the initial guess for the 

trajectory as shown below.  In the graphics, satTOI is displayed in green, 

satFlyBy_Backward is displayed in orange, satFlyBy_Forward is displayed in dark red, 

and satMOI_Backward is displayed in bright red, and satMOI_Forward is displayed in 

blue.  
 

 
 
You can use the mouse to manipulate the OrbitView to see that the patch points are indeed 

discontinuous for the initial guess as shown below in the two screen captures.   If your 

configuration does not provide you with similar graphics, compare your script to the one 

provided for this tutorial and address any differences. 
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Step 2: Find a Smooth Trajectory 
 

At this point in the tutorial, your script is configured to eliminate the patch point 

discontinuities but does not apply mission constraints. We need to make a few small 

modifications to the script before proceeding.  We will turn off the OrbitView to improve the 

run time, and we will remove the Stop command so that the optimizer will attempt to find a 

solution. 

 

1. Near the bottom of the script, comment out the Stop command 

2. In the configuration of EarthView change ShowPlot to false 

3. Click Save Sync Run. 
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After a few optimizer iterations you should see “NLPOpt converged to within target accuracy” 

displayed in the GMAT message window and your XY plot graphics should appear as shown 

below.  Let’s discuss the content of these windows.  The upper left window shows the RSS 

history of velocity error at the two patch points during the optimization process.   The lower 

left window shows the RSS history of the position error.  The upper right window shows error 

in mission orbit inclination, and the lower right window shows error mission orbit apogee and 

perigee radii.  You can see that in all cases the patch point discontinuities were driven to zero, 

but since other constraints were not applied there are still errors in some mission constraints.  

 

 
 

Before proceeding to the next step, go to the message window and copy and paste the final 

values of the optimization variables to a text editor for later use: 

 
Step 3: Find an Optimal Trajectory 
 

At this point in the tutorial, your script is configured to eliminate the patch point 

discontinuities but does not apply constraints. We need to make a few small modifications to 

the script to find a solution that meets the constraints.    

 

1. Remove the “%” sign from the all NonlinearConstraint commands and the Minimize 

command: 

 

   NonlinearConstraint NLPOpt(satTOI.INC=conTOIInclination) 

   NonlinearConstraint NLPOpt(satTOI.RadPer=conTOIPeriapsis) 

   NonlinearConstraint NLPOpt(satMOI_Backward.RadPer = conMOIPeriapsis)  

   NonlinearConstraint NLPOpt(launchRdotV=0) 

   NonlinearConstraint NLPOpt(satMOI_Forward.EarthMJ2000Eq.INC =. . . 

   NonlinearConstraint NLPOpt(satMOI_Forward.RadApo=conMOIApoapsis)  

   Minimize NLPOpt(Cost) 

 

2. Click Save Sync Run. 

 

The screen capture below shows the plots after optimization has been completed.  Notice 

that the constraint errors have been driven to zero in the plots 
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Another way to verify that the constraints have been satisfied is to look in the message 

window where the final constraint variances are displayed as shown below.  We could further 

reduce the variances by lowering the tolerance setting on the optimizer.  

 

 

Equality Constraint Variances: 

      Delta satTOI.INC = 1.44773082411e-011 

      Delta satTOI.RadPer = 7.08496372681e-010 

      Delta satMOI_Backward.RadPer = -3.79732227884e-007 

      Delta launchRdotV = -1.87725390788e-014 

      Delta satTOI.EarthMJ2000Eq.X = 0.00037122167123 

      Delta satTOI.EarthMJ2000Eq.Y = 2.79954474536e-005 

      Delta satTOI.EarthMJ2000Eq.Z = 2.78138068097e-005 

      Delta satTOI.EarthMJ2000Eq.VX = -3.87579257577e-009 

      Delta satTOI.EarthMJ2000Eq.VY = 1.5329883335e-009 

      Delta satTOI.EarthMJ2000Eq.VZ = -6.84140494256e-010 

      Delta satMOI_Backward.EarthMJ2000Eq.X = 0.0327844279818 

      Delta satMOI_Backward.EarthMJ2000Eq.Y = 0.0501471919124 

      Delta satMOI_Backward.EarthMJ2000Eq.Z = 0.0063349630509 

      Delta satMOI_Backward.EarthMJ2000Eq.VX = -7.5196416871e-008 

      Delta satMOI_Backward.EarthMJ2000Eq.VY = -7.48570442854e-008 

      Delta satMOI_Backward.EarthMJ2000Eq.VZ = -6.01668809219e-009 

      Delta satMOI_Forward.EarthMJ2000Eq.INC = -1.25488952563e-010 

      Delta satMOI_Forward.RadApo = -0.000445483252406 

 

Finally, let’s look at the delta-V of the solution.  In this case the delta-V is simply the value of 

MOI.Element1 which is displayed in the message window with a value of  -0.09171 km/s. 

 

 



Tutorials Optimal Lunar Flyby using Multiple Shooting 

23 

 

 

 

 

Step 4: Use a New Initial Guess  
 
In Step 2 above, you saved the final solution for the smooth trajectory run.  Let’s use those 

values as the initial guess and see if we find a similar solution as found in the previous step.  In 

the ScriptEvent that defines the initial guess, paste the values below, below the values already 

there. (don’t overwrite the old values!).  Once you have changed the guess, run the mission 

again.  

 

toiEpoch = 27698.2503232 

flybyEpoch = 27703.7774182 

moiEpoch = 27723.6487435 

satTOI.X = -6651.63393843 

satTOI.Y = -229.372171037 

satTOI.Z = -168.481408909 

satTOI.VX = 0.244028352166 

satTOI.VY = -9.56544906767 

satTOI.VZ = 5.11103080924 

satFlyBy_Forward.X = 869.368923086 

satFlyBy_Forward.Y = -6284.53685414 

satFlyBy_Forward.Z = -3598.94426638 

satFlyBy_Forward.VX = 1.14614444527 

satFlyBy_Forward.VY = -0.726070354598 

satFlyBy_Forward.VZ = -0.617780594192 

satMOI_Backward.X = -53541.9714485 

satMOI_Backward.Y = -68231.6304631 

satMOI_Backward.Z = -1272.77554803 

satMOI_Backward.VX = 2.0799329871 

satMOI_Backward.VY = -1.89082570193 

satMOI_Backward.VZ = -0.284385092038 

 

We see in this case the optimization converged and found essentially the same solution of 

0.091762 km/s 
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Step 5: Apply a New Constraint  
 
We leave it as an exercise, to apply a constraint that the lunar flyby periapsis radius must be 

greater than or equal to 5000 km. 

 

 


