
Tutorials Optimal Lunar Flyby using Multiple Shooting

1

Optimal Lunar Flyby using Multiple
Shooting

Audience Advanced

Length 75 minutes

Prerequisites Complete Simulating an Orbit, Simple Orbit Transfer, Mars B-Plane Targeting
tutorial and take GMAT Fundamentals training course or watch videos.

Script Files Tut_DesignlLunarFlyby.script

Required Plugins VF13ad (proprietary)

Objective and Overview

 Note

For highly elliptic earth orbits (HEO), it is often cheaper to use the Moon’s gravity to raise

periapsis or to perform plane changes, than it is to use the spacecraft’s propulsion resources.

However, designing lunar flybys to achieve multiple specific mission constraints is non-trivial

and requires modern optimization techniques to minimize fuel usage while simultaneously

satisfying trajectory constraints. In this tutorial, you will learn how to design flyby trajectories

by writing a GMAT script to perform multiple shooting optimization. As the analyst, your

goal is to design a lunar flyby that provides a mission orbit periapsis of 15 Re and changes the

inclination of the mission orbit to 10 degrees. (Note: There are other mission constraints that

will be discussed in more detail below.)

To efficiently solve the problem, we will employ the Multiple Shooting Method to break down

the sensitive boundary value problem into smaller, less sensitive problems. We will employ

three trajectory segments. The first segment will begin at Transfer Orbit Insertion (TOI) and

will propagate forward; the second segment is centered at lunar periapsis and propagates both

forward and backwards. The third segment is centered on Mission Orbit Insertion (MOI) and

propagates forward and backwards. See figures 1-3 that illustrate the final orbit solution and

the “Control Points” and “Patch Points” used to solve the problem.

To begin this tutorial we start with several views of the solution to provide a physical understanding of the

problem. In Fig. 1, an illustration of a lunar flyby is shown with the trajectory displayed in red and the Moon’s

orbit displayed in yellow. The Earth is at the center of the frame. We require that the following constraints are

satisfied at TOI:

 The spacecraft is at orbit perigee

 The spacecraft is at an altitude of 285 km.

 The inclination of the transfer orbit is 28.5 degrees.

At lunar flyby, we only require that the flyby altitude is greater than 100 km. This constraint is satisfied

implicitly so we will not explicitly script this constraint. An insertion maneuver is performed at earth perigee

after the lunar flyby to insert into the mission orbit. The following constraints must be satisfied after MOI.

 The mission orbit perigee is 15 Re

 The mission orbit apogee is 60 Re

 The mission orbit inclination is 10 deg.

Tutorials Optimal Lunar Flyby using Multiple Shooting

2

Note: Phasing with the moon is important for these orbits but design considerations for lunar phasing are

beyond the scope of this tutorial.

Figure 1: View of Lunar Flyby from Normal to Earth Equator

Figure 2: View of Lunar Flyby Geometry

Figure 3 illustrates the mission timeline and how control points and patch points are defined. Control points are

drawn using a solid blue circle and are defined as locations where the state of the spacecraft is treated as an

optimization variable. Patch points are drawn with an empty blue circle and are defined as locations where

position and/or velocity continuity is enforced. For this tutorial, we place control points at TOI, the lunar flyby

and MOI. At each control point, the six Cartesian state elements, and the epoch are varied for a total of 18

Tutorials Optimal Lunar Flyby using Multiple Shooting

3

optimization variables. At the MOI control point, there is an additional optimization variable for the delta V to

lower apoapsis to mission altitude.

 Figure 3: Definition of Control Points and Patch Points

Notice that while there are only three control points, we have 5 segments (which will result in 5 spacecraft). The

state at the lunar flyby, which is defined as a control point, is propagated backwards to a patch point and

forwards to a patch point. The same occurs for the MOI control point.

To design this trajectory, you will need to create the following GMAT resources.

1. Create a Moon-centered coordinate system
2. Create 5 spacecraft required for modeling segments
3. Create an Earth-centered and a Moon-centered propagator.
4. Create an impulsive maneuver
5. Create many user variables for use in the script
6. Create A VF13ad optimizer
7. Create plots for tracking the optimization process

After creating the resources using script snippets you will construct the optimization sequence using a
GMAT script. Pseudo-code for the optimization sequence is shown below.

Define optimization initial guesses

Initialize variables

Optimize

 Loop initializations

 Vary control point epochs

 Set epochs on spacecraft

 Vary control point state values

 Configure/initialize spacecraft

 Apply constraints on initial control points (i.e before propagation)

 Propagate spacecraft

 Apply patch point constraints

 Apply constraints on mission orbit

 Apply cost function

EndOptimize

Transfer Orbit

Insertion (TOI)

Lunar Flyby Mission Orbit

Insertion (MOI)

Control point (CP)

Patch point (PP)

Tutorials Optimal Lunar Flyby using Multiple Shooting

4

After constructing the basic optimization sequence we will perform the following steps:

1. Run the sequence and analyze the initial guess
2. Run the optimizer satisfying only the patch point constraints
3. Turn on the mission orbit constraints and find a feasible solution
4. Use the feasible solution as the initial guess and find an optimal solution
5. Apply an altitude constraint at lunar orbit periapsis

Let’s get started.

Configure Coordinate Systems, Spacecraft, Optimizer, Propagators,
Maneuvers, Variables, and Graphics

For this tutorial, you’ll need GMAT open, with a blank script editor open. To open a blank script

editor, click the New Script button in the toolbar.

Create a Moon-centered Coordinate System

You will need a Moon-centered CoordinateSystem for the lunar flyby control point so we

begin by creating an inertial system centered at the moon. Use the MJ2000Eq axes for this

system.

Note when you paste in subsequent script snippets they must be placed before the

BeginMissionSequence command

Create the Spacecraft

You will need 5 Spacecraft for this mission design. The epoch and state information will be

set in the mission sequence and here we only need to configure coordinate systems for the

Spacecraft. The Spacecraft named satTOI models the transfer orbit through the first

patch point. Use the EarthMJ200Eq CoordinateSystem for satTOI.

satFlyBy_Forward and satFlyBy_Backward model the trajectory from the flyby

forward to patch point 1 and backward to patch point 2 respectively. Use the

MoonMJ2000Eq CoordinateSystem for satFlyBy_Forward and

satFlyBy_Backward. Similarly, satMOI_Forward and satMOI_Backward model the

trajectory on either side of the MOI maneuver. Use the EarthMJ2000Eq

CoordinateSystem for satMOI_Forward and satMOI_Backward.

%---

% Configure coordinate systems

%---

Create CoordinateSystem MoonMJ2000Eq

MoonMJ2000Eq.Origin = Luna

MoonMJ2000Eq.Axes = MJ2000Eq

BeginMissionSequence

Tutorials Optimal Lunar Flyby using Multiple Shooting

5

Create the Propagators

Modeling the motion of the spacecraft when near the Earth and near the moon requires two

propagators; one Earth-centered, and one Moon-centered. The script below configures the

ForceModel named NearEarthForceModel to use JGM-2 8x8 harmonic gravity model, with

point mass perturbations from the Sun and Moon, and the SRP perturbation. The ForceModel

named NearMoonForceModel is similar but uses point mass gravity for all bodies and includes

SRP. Note that the integrators are configured for performance and not for accuracy to

improve run times for the tutorial. There are times when integrator accuracy can cause issues

with optimizer performance due to noise in the numerical solutions.

%---

% Configure spacecraft

%---

% The TOI control point

Create Spacecraft satTOI

satTOI.DateFormat = TAIModJulian

satTOI.CoordinateSystem = EarthMJ2000Eq

% Flyby control point

Create Spacecraft satFlyBy_Forward

satFlyBy_Forward.DateFormat = TAIModJulian

satFlyBy_Forward.CoordinateSystem = MoonMJ2000Eq

% Flyby control point

Create Spacecraft satFlyBy_Backward

satFlyBy_Backward.DateFormat = TAIModJulian

satFlyBy_Backward.CoordinateSystem = MoonMJ2000Eq

% MOI control point

Create Spacecraft satMOI_Backward

satMOI_Backward.DateFormat = TAIModJulian

satMOI_Backward.CoordinateSystem = EarthMJ2000Eq

% MOI control point

Create Spacecraft satMOI_Forward

satMOI_Forward.DateFormat = TAIModJulian

satMOI_Forward.CoordinateSystem = EarthMJ2000Eq

Tutorials Optimal Lunar Flyby using Multiple Shooting

6

Create the Maneuvers

We will require one ImpulsiveBurn to insert the spacecraft into the mission orbit. Define the

maneuver as MOI and configure the maneuver to be applied in the VNB (Earth-referenced) Axes.

%--

% Configure propagators and force models

%---

Create ForceModel NearEarthForceModel

NearEarthForceModel.CentralBody = Earth

NearEarthForceModel.PrimaryBodies = {Earth}

NearEarthForceModel.PointMasses = {Luna, Sun}

NearEarthForceModel.SRP = On

NearEarthForceModel.GravityField.Earth.Degree = 8

NearEarthForceModel.GravityField.Earth.Order = 8

Create ForceModel NearMoonForceModel

NearMoonForceModel.CentralBody = Luna

NearMoonForceModel.PointMasses = {Luna, Earth, Sun}

NearMoonForceModel.Drag = None

NearMoonForceModel.SRP = On

Create Propagator NearEarthProp

NearEarthProp.FM = NearEarthForceModel

NearEarthProp.Type = PrinceDormand78

NearEarthProp.InitialStepSize = 60

NearEarthProp.Accuracy = 1e-11

NearEarthProp.MinStep = 0.0

NearEarthProp.MaxStep = 86400

Create Propagator NearMoonProp

NearMoonProp.FM = NearMoonForceModel

NearMoonProp.Type = PrinceDormand78

NearMoonProp.InitialStepSize = 60

NearMoonProp.Accuracy = 1e-11

NearMoonProp.MinStep = 0

NearMoonProp.MaxStep = 86400

%---

% Configure maneuvers

%---

Create ImpulsiveBurn MOI

MOI.CoordinateSystem = Local

MOI.Origin = Earth

MOI.Axes = VNB

Tutorials Optimal Lunar Flyby using Multiple Shooting

7

Create the User Variables

The optimization sequence requires many user variables that will be discussed in detail later in

the tutorial when we define those variables. For now, we simply create the variables (which

initializes them to zero). The naming convention used here is that variables used to define

constraint values begin with “con”. For example, the variable used to define the constraint on

TOI inclination is called conTOIInclination. Variables beginning with “error” are used to

compute constraint variances. For example, the variable used to define the error in MOI

inclination is called errorMOIInclination.

Create the Optimizer

The script below creates a VF13ad optimizer provided in the Harwell Subroutine Library.

VF13ad is an Sequential Quadratic Programming (SQP) optimizer that uses a line search

method to solve the Non-linear Programming Problem (NLP). Here we configure the

optimizer to use forward differencing to compute the derivatives, set the maximum iterations

to 200, and define convergence tolerances.

%---

% Create user data: variables, arrays, strings

%---

% Variables for defining constraint values

Create Variable conTOIPeriapsis conMOIPeriapsis conTOIInclination

Create Variable conLunarPeriapsis conMOIApoapsis conMOIInclination

Create Variable launchRdotV finalPeriapsisValue

% Variables for computing constraint violations

Create Variable errorPos1 errorVel1 errorPos2 errorVel2

Create Variable errorMOIRadApo errorMOIRadPer errorMOIInclination

% Variables for managing time calculations

Create Variable patchTwoElapsedDays patchOneEpoch patchTwoEpoch refEpoch

Create Variable toiEpoch flybyEpoch moiEpoch patchOneElapsedDays

Create Variable deltaTimeFlyBy

% Constants and miscellaneous variables

Create Variable earthRadius earthMu launchEnergy launchVehicleDeltaV

Create Variable toiDeltaV launchCircularVelocity loopIdx Cost

Tutorials Optimal Lunar Flyby using Multiple Shooting

8

Create the 3-D Graphics

You will need an OrbitView 3-D graphics window to visualize the trajectory and especially the

initial guess. Below we configure an orbit view to view the entire trajectory in the

EarthMJ2000Eq coordinate system. Note that we must add all five Spacecraft to the

OrbitView. Updating an OrbitView during optimization can dramatically slow down the

optimization process and they are best used to check initial configuration and then use XY

plots to track numerical progress. Later in the tutorial, we will toggle the ShowPlot field to

false once we have verified the initial configuration is correct.

%---

% Configure solvers

%---

Create VF13ad NLPOpt

NLPOpt.ShowProgress = true

NLPOpt.ReportStyle = Normal

NLPOpt.ReportFile = 'VF13adVF13ad1.data'

NLPOpt.MaximumIterations = 200

NLPOpt.Tolerance = 1e-004

NLPOpt.UseCentralDifferences = false

NLPOpt.FeasibilityTolerance = 0.1

%---

% Configure plots, reports, etc.

%---

Create OrbitView EarthView

EarthView.ShowPlot = true

EarthView.SolverIterations = All

EarthView.UpperLeft = [0.4960127591706539 0.00992063492063492];

EarthView.Size = [0.4800637958532695 0.5218253968253969];

EarthView.RelativeZOrder = 501

EarthView.Add = {satTOI, satFlyBy_Forward,

satFlyBy_Backward, satMOI_Backward, Earth, Luna, satMOI_Forward}

EarthView.CoordinateSystem = EarthMJ2000Eq

EarthView.DrawObject = [true true true true true]

EarthView.OrbitColor = [255 32768 1743054 16776960 32768 12632256

14268074]

EarthView.TargetColor = [65280 124 4227327 255 12345 9843 16711680];

EarthView.DataCollectFrequency = 1

EarthView.UpdatePlotFrequency = 50

EarthView.NumPointsToRedraw = 300

EarthView.ViewScaleFactor = 35

EarthView.ViewUpAxis = X

EarthView.UseInitialView = On

Tutorials Optimal Lunar Flyby using Multiple Shooting

9

Create XPPlots/Reports

Below we create several XYPlots and a ReportFile. We will use XYPlots to monitor the

progress of the optimizer in satisfying constraints. PositionError plots the position error at

the patch points. VelocityError plots the velocity error at the patch points. OrbitDimErrors

plots the errors in the periapsis and apoapsis radii for the mission orbit.

When optimization is proceeding as expected, these plots should show errors

driven to zero.

Create XYPlot PositionError

PositionError.SolverIterations = All

PositionError.UpperLeft = [0.02318840 0.4358208955223881];

PositionError.Size = [0.45942028 0.5283582089552239];

PositionError.RelativeZOrder = 378

PositionError.XVariable = loopIdx

PositionError.YVariables = {errorPos1, errorPos2}

PositionError.ShowGrid = true

PositionError.ShowPlot = true

Create XYPlot VelocityError

VelocityError.SolverIterations = All

VelocityError.UpperLeft = [0.0246376 0.01194029850746269];

VelocityError.Size = [0.4565217 0.4208955223880597];

VelocityError.RelativeZOrder = 410

VelocityError.XVariable = loopIdx

VelocityError.YVariables = {errorVel1, errorVel2}

VelocityError.ShowGrid = true

VelocityError.ShowPlot = true

Create XYPlot OrbitDimErrors

OrbitDimErrors.SolverIterations = All

OrbitDimErrors.UpperLeft = [0.4960127591706539 0.5337301587301587];

OrbitDimErrors.Size = [0.481658692185008 0.4246031746031746];

OrbitDimErrors.RelativeZOrder = 347

OrbitDimErrors.XVariable = loopIdx

OrbitDimErrors.YVariables = {errorMOIRadApo, errorMOIRadPer}

OrbitDimErrors.ShowGrid = true

OrbitDimErrors.ShowPlot = true

Create XYPlot IncError

IncError.SolverIterations = All

IncError.UpperLeft = [0.4953586497890296 0.01306240928882438];

IncError.Size = [0.479324894514768 0.5079825834542816];

IncError.RelativeZOrder = 382

IncError.YVariables = {errorMOIInclination}

IncError.XVariable = loopIdx

IncError.ShowGrid = true

IncError.ShowPlot = true

Tutorials Optimal Lunar Flyby using Multiple Shooting

10

Create a ReportFile to allow reporting of useful information to a text file for review after the

optimization process is complete.

Configure the Mission Sequence

Overview of the Mission Sequence

Now that the resources are created and configured, we will construct the optimization

sequence. Pseudo-script for the optimization sequence is shown below. We will start by

defining initial guesses for the control point optimization variables. Next, selected variables are

initialized. Take some time and study the structure of the optimization loop before moving on

to the next step.

Define Initial Guesses

Below we define initial guesses for the optimization variables. Initial guesses are often difficult

to generate and to ensure you can take this tutorial we have provided a reasonable initial guess

for this problem. You can use GMAT to produce initial guesses and the sample script named

Ex_GivenEpochGoToTheMoon distributed with GMAT can be used for that purpose for this

tutorial.

The time variables toiEpoch, flybyEpoch and moiEpoch are the TAI modified Julian epochs

of the TOI, flyby, and MOI. It is not obvious yet that these are TAI modified Julian epochs,

Create ReportFile debugData

debugData.SolverIterations = Current

debugData.Precision = 16

debugData.WriteHeaders = Off

debugData.LeftJustify = On

debugData.ZeroFill = Off

debugData.ColumnWidth = 20

debugData.WriteReport = false

Define optimization initial guesses

Initialize variables

Optimize

 Loop initializations

 Vary control point epochs

 Set epochs on spacecraft

 Vary control point state values

 Set state values on spacecraft

 Apply constraints on control points (i.e before propagation)

 Propagate spacecraft

 Apply patch point constraints (i.e. after propagation)

 Apply constraints on mission orbit

 Apply cost function

EndOptimize

Tutorials Optimal Lunar Flyby using Multiple Shooting

11

but later we use statements like this to set the epoch: satTOI.Epoch.TAIModJulian =

toiEpoch. Recall that we previously set up the spacecraft to used coordinate systems

appropriate to the problem. Setting satTOI.X sets the quantity in EarthMJ2000Eq and

satFlyBy_Forward.X sets the quantity in MoonMJ2000Eq because of the configuration of the

spacecraft.

Initialize Variables

The script below is used to define some constants and to define the values for various

constraints applied to the trajectory. Pay particular attention to the constraint values and time

values. For example, the variable conTOIPeriapsis defines the periapsis radius at

TOI constraint to be at about 285 km (geodetics will cause altitude to vary slightly). The

variable conMOIApoapsis defines the mission orbit apoapsis to be 60 earth radii. The variables

patchOneElapsedDays, patchTwoElapsedDays, and refEpoch are particularly important as

they define the epochs of the patch points later in the script using lines like this

patchOneEpoch = refEpoch + patchOneElapsedDays The preceding line defines the epoch

of the first patch point to be one day after refEpoch (refEpoch is set to toiEpoch). Similarly,

the epoch of the second patch point is defined as 13 days after refEpoch. Note, the patch

point epochs can be treated as optimization variables but that was not done to reduce

complexity of the tutorial.

BeginMissionSequence

% Define initial guesses for optimization variables

BeginScript 'Initial Guess Values'

 toiEpoch = 27698.1612435

 flybyEpoch = 27703.7658714

 moiEpoch = 27723.305398

 satTOI.X = -6651.70273964

 satTOI.Y = -229.327053112

 satTOI.Z = -168.396030559

 satTOI.VX = 0.26826479315

 satTOI.VY = -9.54041067213

 satTOI.VZ = 5.17141415746

 satFlyBy_Forward.X = 869.478955662

 satFlyBy_Forward.Y = -6284.76679557

 satFlyBy_Forward.Z = -3598.47087228

 satFlyBy_Forward.VX = 1.14619150302

 satFlyBy_Forward.VY = -0.73648611256

 satFlyBy_Forward.VZ = -0.624051812914

 satMOI_Backward.X = -53541.9703742

 satMOI_Backward.Y = -68231.6310266

 satMOI_Backward.Z = -1272.76362793

 satMOI_Backward.VX = 2.051823425

 satMOI_Backward.VY = -1.91406286218

 satMOI_Backward.VZ = -0.280408526046

 MOI.Element1 = -0.0687322937282

EndScript

Tutorials Optimal Lunar Flyby using Multiple Shooting

12

Vary and Set Spacecraft Epochs

Now we will write the commands that vary the control point epochs and apply those epochs to

the spacecraft. The first three script lines below define toiEpoch, flybyEpoch, and moiEpoch

to be optimization variables. It is important to note that when a Vary command is written like

this

Vary NLPOpt(toiEpoch = toiEpoch, . . .

that you are telling the optimizer to vary toiEpoch (the RHS of the equal sign), and to use as

the initial guess the value contained in toiEpoch when the command is first executed. This

will allow us to easily change initial guess values and perform “Apply Corrections” via the script

interface which will be shown later. Continuing with the script explanation, the last five lines

below set the epochs of the spacecraft and set up the patch point epochs.

% Define constants and configuration settings

BeginScript 'Constants and Init'

 % Some constants

 earthRadius = 6378.1363

 % Define constraint values and other constants

 conTOIPeriapsis = 6378 + 285 % constraint on launch periapsis

 conTOIInclination = 28.5 % constraint launch inclination

 conLunarPeriapsis = 8000 % constraint on flyby altitude

 conMOIApoapsis = 60*earthRadius % constraint on mission apoapsis

 conMOIInclination = 10 % constraint on mission inc.

 conMOIPeriapsis = 15*earthRadius % constraint on mission periapsis

 patchOneElapsedDays = 1 % define epoch of patch 1

 patchTwoElapsedDays = 13 % define epoch of patch 2

 refEpoch = toiEpoch % ref. epoch for time quantities

EndScript

% The optimization loop

Optimize 'Optimize Flyby' NLPOpt {SolveMode = Solve, ExitMode =

DiscardAndContinue}

 % Loop initializations

 loopIdx = loopIdx + 1

EndOptimize

Caution: In the above script snippet, we have included the EndOptimize command so that

your script will continue to build while we construct the optimization sequence. You must

paste subsequence script snippets inside of the optimization loop.

Tutorials Optimal Lunar Flyby using Multiple Shooting

13

Vary Control Point States

The script below defines the control point optimization variables and defines the initial guess

values for each optimization variable. For example, the following line

Vary NLPOpt(satTOI.X = satTOI.X, {Perturbation = 0.00001, MaxStep = 100})

tells GMAT to vary the X Cartesian value of satTOI using as the initial guess the value of

satTOI.X at initial command execution. The Perturbation used to compute derivatives is

0.00001 and the optimizer will not take steps larger than 100 for this variable. Note: units of

settings like Perturbation are the same as the unit for the optimization variable.

Notice the lines at the bottom of this script snippet that look like this:

satFlyBy_Backward = satFlyBy_Forward

This line assigns an entire spacecraft to another spacecraft. Because we are varying one control

point in the middle of a segment, this assignment allows us to conveniently set the second

spacecraft without independently varying its state properties.

 % Vary the epochs

 Vary NLPOpt(toiEpoch = toiEpoch, {Perturbation = 0.0001, MaxStep = 0.5})

 Vary NLPOpt(flybyEpoch = flybyEpoch, {Perturbation = 0.0001, MaxStep = 0.5})

 Vary NLPOpt(moiEpoch = moiEpoch, {Perturbation = 0.0001, MaxStep = 0.5})

 % Configure epochs and spacecraft

 satTOI.Epoch.TAIModJulian = toiEpoch

 satMOI_Backward.Epoch.TAIModJulian = moiEpoch

 satFlyBy_Forward.Epoch.TAIModJulian = flybyEpoch

 patchOneEpoch = refEpoch + patchOneElapsedDays

 patchTwoEpoch = refEpoch + patchTwoElapsedDays

Tutorials Optimal Lunar Flyby using Multiple Shooting

14

Apply Constraints at Control Points

Now that the control points have been set, we can apply constraints that occur at the control

points (i.e. before propagation to the patch point). Notice below that the

NonlinearContraint commands are commented out. We will uncomment those constraints

later. The commands below, when uncommented, will apply constraints on the launch

inclination, the launch periapsis radius, the mission orbit periapsis, and the last constraint

ensures that TOI occurs at periapsis of the transfer orbit.

 % Vary the states and delta V

 Vary NLPOpt(satTOI. = satTOI.X, {Perturbation = 0.00001, MaxStep = 100})

 Vary NLPOpt(satTOI.Y = satTOI.Y, {Perturbation = 0.000001, MaxStep = 100})

 Vary NLPOpt(satTOI.Z = satTOI.Z, {Perturbation = 0.00001, MaxStep = 100})

 Vary NLPOpt(satTOI.VX = satTOI.VX, {Perturbation = 0.00001, MaxStep = 0.05})

 Vary NLPOpt(satTOI.VY = satTOI.VY, {Perturbation = 0.000001, MaxStep = 0.05})

 Vary NLPOpt(satTOI.VZ = satTOI.VZ, {Perturbation = 0.000001, MaxStep = 0.05})

 Vary NLPOpt(satFlyBy_Forward.X = satFlyBy_Forward.MoonMJ2000Eq.X,

{Perturbation = 0.00001, MaxStep = 100})

 Vary NLPOpt(satFlyBy_Forward.Y = satFlyBy_Forward.MoonMJ2000Eq.Y,

{Perturbation = 0.00001, MaxStep = 100})

 Vary NLPOpt(satFlyBy_Forward.Z = satFlyBy_Forward.MoonMJ2000Eq.Z,

{Perturbation = 0.00001, MaxStep = 100})

 Vary NLPOpt(satFlyBy_Forward.VX = satFlyBy_Forward.MoonMJ2000Eq.VX,

{Perturbation = 0.00001, MaxStep = 0.1})

 Vary NLPOpt(satFlyBy_Forward.VY = satFlyBy_Forward.MoonMJ2000Eq.VY,

{Perturbation = 0.00001, MaxStep = 0.1})

 Vary NLPOpt(satFlyBy_Forward.VZ = satFlyBy_Forward.MoonMJ2000Eq.VZ,

{Perturbation = 0.00001, MaxStep = 0.1})

 Vary NLPOpt(satMOI_Backward.X = satMOI_Backward.X, {Perturbation = 0.000001,

MaxStep = 40000})

 Vary NLPOpt(satMOI_Backward.Y = satMOI_Backward.Y, {Perturbation = 0.000001,

MaxStep = 40000})

 Vary NLPOpt(satMOI_Backward.Z = satMOI_Backward.Z, {Perturbation = 0.000001,

MaxStep = 40000})

 Vary NLPOpt(satMOI_Backward.VX = satMOI_Backward.VX, {Perturbation = 0.00001,

MaxStep = 0.1})

 Vary NLPOpt(satMOI_Backward.VY = satMOI_Backward.VY, {Perturbation = 0.00001,

MaxStep = 0.1})

 Vary NLPOpt(satMOI_Backward.VZ = satMOI_Backward.VZ, {Perturbation = 0.00001,

MaxStep = 0.1})

 Vary NLPOpt(MOI.Element1 = MOI.Element1, {Perturbation = 0.0001,

MaxStep = 0.005})

 % Initialize spacecraft and do some reporting

 satFlyBy_Backward = satFlyBy_Forward

 satMOI_Forward = satMOI_Backward

 deltaTimeFlyBy = flybyEpoch - toiEpoch

Tutorials Optimal Lunar Flyby using Multiple Shooting

15

Propagate the Segments

We are now ready to propagate the spacecraft to the patch points. We must propagate satTOI

forward to patchOneEpoch, propagate satFlyBy_Backward backwards to patchOneEpoch,

propagate satFlyBy_Forward forward to patchTwoEpoch, and propagate satMOI_Backward

backward to patchTwoEpoch. Notice that some Propagate commands are applied inside of

If statements to ensure that propagation is performed in the correct direction.

If satFlyBy_Forward.TAIModJulian > patchTwoEpoch

 Propagate BackProp NearMoonProp(satFlyBy_Forward) . . .

 Else

 Propagate NearMoonProp(satFlyBy_Forward) . . .

EndIf

In the script below, you will notice syntax like this:

Propagate NearEarthProp(satTOI) {satTOI.TAIModJulian = patchOneEpoch, …

PenUp EarthView % The next three lines handle plot epoch discontinuity

Propagate BackProp NearMoonProp(satFlyBy_Backward)

PenDown EarthView

These lines are used to clean up discontinuities in the OrbitView that occur because we are

making discontinuous changes to time in this complex script.

 % Apply constraints on initial states

 %NonlinearConstraint NLPOpt(satTOI.INC=conTOIInclination)

 %NonlinearConstraint NLPOpt(satTOI.RadPer=conTOIPeriapsis)

 %NonlinearConstraint NLPOpt(satMOI_Backward.RadPer = conMOIPeriapsis)

 errorMOIRadPer = satMOI_Backward.RadPer - conMOIPeriapsis

 % This constraint ensures that satTOI state is at periapsis at TOI

 launchRdotV = (satTOI.X *satTOI.VX + satTOI.Y *satTOI.VY + satTOI.Z

*satTOI.VZ)/1000

 %NonlinearConstraint NLPOpt(launchRdotV=0)

Tutorials Optimal Lunar Flyby using Multiple Shooting

16

Compute Some Quantities and Apply Patch Constraints

The variables errorPos1 and others below are used in XYPlots to display position and

velocity errors at the patch points.

% Propagate the segments

 Propagate NearEarthProp(satTOI) {satTOI.TAIModJulian = patchOneEpoch,

StopTolerance = 1e-005}

 PenUp EarthView % The next three lines handle epoch discontinuity

in plotting

 Propagate BackProp NearMoonProp(satFlyBy_Backward)

 PenDown EarthView

 Propagate BackProp NearMoonProp(satFlyBy_Backward)

{satFlyBy_Backward.TAIModJulian = patchOneEpoch, StopTolerance = 1e-005}

 % Propagate FlybySat to Apogee and apply apogee constraints

 PenUp EarthView % The next three lines handle epoch discontinuity

in plotting

 Propagate NearMoonProp(satFlyBy_Forward)

 PenDown EarthView

 Propagate NearMoonProp(satFlyBy_Forward)

{satFlyBy_Forward.Earth.Apoapsis, StopTolerance = 1e-005}

 Report debugData satFlyBy_Forward.RMAG

 % Propagate FlybSat and satMOI_Backward to patchTwoEpoch

 If satFlyBy_Forward.TAIModJulian > patchTwoEpoch

 Propagate BackProp NearMoonProp(satFlyBy_Forward)

{satFlyBy_Forward.TAIModJulian = patchTwoEpoch, StopTolerance = 1e-005}

 Else

 Propagate NearMoonProp(satFlyBy_Forward)

{satFlyBy_Forward.TAIModJulian = patchTwoEpoch, StopTolerance = 1e-005}

 EndIf

 PenUp EarthView % The next three lines handle epoch discontinuity

in plotting

 Propagate BackProp NearMoonProp(satMOI_Backward)

 PenDown EarthView

 Propagate BackProp NearMoonProp(satMOI_Backward)

{satMOI_Backward.TAIModJulian = patchTwoEpoch, StopTolerance = 1e-005}

Tutorials Optimal Lunar Flyby using Multiple Shooting

17

Apply Patch Point Constraints

The NonlinearConstraint commands below apply the patch point constraints.

Apply Constraints on Mission Orbit

We can now apply constraints on the final mission orbit that cannot be applied until after

propagation. The script snippet below applies the inclination constraint on the final mission

orbit, and applies the apogee radius constraint on the final mission orbit after MOI is applied.

 % Compute constraint errors for plots

 errorPos1 = sqrt((satTOI.X - satFlyBy_Backward.X)^2 + (satTOI.Y -

satFlyBy_Backward.Y)^2 + (satTOI.Z - satFlyBy_Backward.Z)^2)

 errorVel1 = sqrt((satTOI.VX - satFlyBy_Backward.VX)^2 + (satTOI.VY -

satFlyBy_Backward.VY)^2 + (satTOI.VZ - satFlyBy_Backward.VZ)^2)

 errorPos2 = sqrt((satMOI_Backward.X - satFlyBy_Forward.X)^2 +

(satMOI_Backward.Y - satFlyBy_Forward.Y)^2 + (satMOI_Backward.Z -

satFlyBy_Forward.Z)^2)

 errorVel2 = sqrt((satMOI_Backward.VX - satFlyBy_Forward.VX)^2 +

(satMOI_Backward.VY - satFlyBy_Forward.VY)^2 + (satMOI_Backward.VZ -

satFlyBy_Forward.VZ)^2)

 % Apply the collocation constraints on final states

 NonlinearConstraint

NLPOpt(satTOI.EarthMJ2000Eq.X=satFlyBy_Backward.EarthMJ2000Eq.X)

 NonlinearConstraint

NLPOpt(satTOI.EarthMJ2000Eq.Y=satFlyBy_Backward.EarthMJ2000Eq.Y)

 NonlinearConstraint

NLPOpt(satTOI.EarthMJ2000Eq.Z=satFlyBy_Backward.EarthMJ2000Eq.Z)

 NonlinearConstraint

NLPOpt(satTOI.EarthMJ2000Eq.VX=satFlyBy_Backward.EarthMJ2000Eq.VX)

 NonlinearConstraint

NLPOpt(satTOI.EarthMJ2000Eq.VY=satFlyBy_Backward.EarthMJ2000Eq.VY)

 NonlinearConstraint

NLPOpt(satTOI.EarthMJ2000Eq.VZ=satFlyBy_Backward.EarthMJ2000Eq.VZ)

 NonlinearConstraint

NLPOpt(satMOI_Backward.EarthMJ2000Eq.X=satFlyBy_Forward.EarthMJ2000Eq.X)

 NonlinearConstraint

NLPOpt(satMOI_Backward.EarthMJ2000Eq.Y=satFlyBy_Forward.EarthMJ2000Eq.Y)

 NonlinearConstraint

NLPOpt(satMOI_Backward.EarthMJ2000Eq.Z=satFlyBy_Forward.EarthMJ2000Eq.Z)

 NonlinearConstraint

NLPOpt(satMOI_Backward.EarthMJ2000Eq.VX=satFlyBy_Forward.EarthMJ2000Eq.VX)

 NonlinearConstraint

NLPOpt(satMOI_Backward.EarthMJ2000Eq.VY=satFlyBy_Forward.EarthMJ2000Eq.VY)

 NonlinearConstraint

NLPOpt(satMOI_Backward.EarthMJ2000Eq.VZ=satFlyBy_Forward.EarthMJ2000Eq.VZ)

Tutorials Optimal Lunar Flyby using Multiple Shooting

18

Apply Cost Function

The last script snippet applies the cost function and a Stop command. The Stop command is

so that we can QA your script configuration and make sure the initial guess is providing

reasonable results before attempting optimization

 % Apply mission orbit constraints and others on segments after

propagation

 errorMOIInclination = satMOI_Forward.INC - conMOIInclination

 %NonlinearConstraint NLPOpt(satMOI_Forward.EarthMJ2000Eq.INC =

conMOIInclination)

 % Propagate satMOI_Forward to apogee

 PenUp EarthView % The next three lines handle epoch discontinuity

in plotting

 Propagate NearEarthProp(satMOI_Forward)

 PenDown EarthView

 If satMOI_Forward.Earth.TA > 180

 Propagate NearEarthProp(satMOI_Forward)

{satMOI_Forward.Earth.Periapsis}

 Else

 Propagate BackProp NearEarthProp(satMOI_Forward)

{satMOI_Forward.Earth.Periapsis}

 EndIf

 Maneuver MOI(satMOI_Forward)

 Propagate NearEarthProp(satMOI_Forward) {satMOI_Forward.Earth.Apoapsis}

 %NonlinearConstraint NLPOpt(satMOI_Forward.RadApo=conMOIApoapsis)

 errorMOIRadApo = satMOI_Forward.Earth.RadApo - conMOIApoapsis

 % Apply cost function and

 Cost = sqrt(MOI.Element1^2 + MOI.Element2^2 + MOI.Element3^2)

 %Minimize NLPOpt(Cost)

 % Report stuff at the end of the loop

 Report debugData MOI.Element1

 Report debugData satMOI_Forward.RMAG conMOIApoapsis conMOIInclination

 Stop

Tutorials Optimal Lunar Flyby using Multiple Shooting

19

Configure the Mission Sequence

Overview

We are now ready to design the trajectory. We’ll do this in a couple of steps:

1. Run the script configuration and verify your configuration.

2. Run the mission applying only the patch point constraints to provide a smooth

trajectory.

3. Run the mission with all constraints applied generating an optimal solution.

4. Run the mission with an alternative initial guess.

5. Add a new constraint and rerun the mission.

Step 1: Verify Your Configuration

If your script is configured correctly, when you click “Save-Sync-Run” in the bottom of the

script editor, you should see an OrbitView graphics window display the initial guess for the

trajectory as shown below. In the graphics, satTOI is displayed in green,

satFlyBy_Backward is displayed in orange, satFlyBy_Forward is displayed in dark red,

and satMOI_Backward is displayed in bright red, and satMOI_Forward is displayed in

blue.

You can use the mouse to manipulate the OrbitView to see that the patch points are indeed

discontinuous for the initial guess as shown below in the two screen captures. If your

configuration does not provide you with similar graphics, compare your script to the one

provided for this tutorial and address any differences.

Tutorials Optimal Lunar Flyby using Multiple Shooting

20

Step 2: Find a Smooth Trajectory

At this point in the tutorial, your script is configured to eliminate the patch point

discontinuities but does not apply mission constraints. We need to make a few small

modifications to the script before proceeding. We will turn off the OrbitView to improve the

run time, and we will remove the Stop command so that the optimizer will attempt to find a

solution.

1. Near the bottom of the script, comment out the Stop command

2. In the configuration of EarthView change ShowPlot to false

3. Click Save Sync Run.

Tutorials Optimal Lunar Flyby using Multiple Shooting

21

After a few optimizer iterations you should see “NLPOpt converged to within target accuracy”

displayed in the GMAT message window and your XY plot graphics should appear as shown

below. Let’s discuss the content of these windows. The upper left window shows the RSS

history of velocity error at the two patch points during the optimization process. The lower

left window shows the RSS history of the position error. The upper right window shows error

in mission orbit inclination, and the lower right window shows error mission orbit apogee and

perigee radii. You can see that in all cases the patch point discontinuities were driven to zero,

but since other constraints were not applied there are still errors in some mission constraints.

Before proceeding to the next step, go to the message window and copy and paste the final

values of the optimization variables to a text editor for later use:

Step 3: Find an Optimal Trajectory

At this point in the tutorial, your script is configured to eliminate the patch point

discontinuities but does not apply constraints. We need to make a few small modifications to

the script to find a solution that meets the constraints.

1. Remove the “%” sign from the all NonlinearConstraint commands and the Minimize

command:

 NonlinearConstraint NLPOpt(satTOI.INC=conTOIInclination)

 NonlinearConstraint NLPOpt(satTOI.RadPer=conTOIPeriapsis)

 NonlinearConstraint NLPOpt(satMOI_Backward.RadPer = conMOIPeriapsis)

 NonlinearConstraint NLPOpt(launchRdotV=0)

 NonlinearConstraint NLPOpt(satMOI_Forward.EarthMJ2000Eq.INC =. . .

 NonlinearConstraint NLPOpt(satMOI_Forward.RadApo=conMOIApoapsis)

 Minimize NLPOpt(Cost)

2. Click Save Sync Run.

The screen capture below shows the plots after optimization has been completed. Notice

that the constraint errors have been driven to zero in the plots

Tutorials Optimal Lunar Flyby using Multiple Shooting

22

Another way to verify that the constraints have been satisfied is to look in the message

window where the final constraint variances are displayed as shown below. We could further

reduce the variances by lowering the tolerance setting on the optimizer.

Equality Constraint Variances:

 Delta satTOI.INC = 1.44773082411e-011

 Delta satTOI.RadPer = 7.08496372681e-010

 Delta satMOI_Backward.RadPer = -3.79732227884e-007

 Delta launchRdotV = -1.87725390788e-014

 Delta satTOI.EarthMJ2000Eq.X = 0.00037122167123

 Delta satTOI.EarthMJ2000Eq.Y = 2.79954474536e-005

 Delta satTOI.EarthMJ2000Eq.Z = 2.78138068097e-005

 Delta satTOI.EarthMJ2000Eq.VX = -3.87579257577e-009

 Delta satTOI.EarthMJ2000Eq.VY = 1.5329883335e-009

 Delta satTOI.EarthMJ2000Eq.VZ = -6.84140494256e-010

 Delta satMOI_Backward.EarthMJ2000Eq.X = 0.0327844279818

 Delta satMOI_Backward.EarthMJ2000Eq.Y = 0.0501471919124

 Delta satMOI_Backward.EarthMJ2000Eq.Z = 0.0063349630509

 Delta satMOI_Backward.EarthMJ2000Eq.VX = -7.5196416871e-008

 Delta satMOI_Backward.EarthMJ2000Eq.VY = -7.48570442854e-008

 Delta satMOI_Backward.EarthMJ2000Eq.VZ = -6.01668809219e-009

 Delta satMOI_Forward.EarthMJ2000Eq.INC = -1.25488952563e-010

 Delta satMOI_Forward.RadApo = -0.000445483252406

Finally, let’s look at the delta-V of the solution. In this case the delta-V is simply the value of

MOI.Element1 which is displayed in the message window with a value of -0.09171 km/s.

Tutorials Optimal Lunar Flyby using Multiple Shooting

23

Step 4: Use a New Initial Guess

In Step 2 above, you saved the final solution for the smooth trajectory run. Let’s use those

values as the initial guess and see if we find a similar solution as found in the previous step. In

the ScriptEvent that defines the initial guess, paste the values below, below the values already

there. (don’t overwrite the old values!). Once you have changed the guess, run the mission

again.

toiEpoch = 27698.2503232

flybyEpoch = 27703.7774182

moiEpoch = 27723.6487435

satTOI.X = -6651.63393843

satTOI.Y = -229.372171037

satTOI.Z = -168.481408909

satTOI.VX = 0.244028352166

satTOI.VY = -9.56544906767

satTOI.VZ = 5.11103080924

satFlyBy_Forward.X = 869.368923086

satFlyBy_Forward.Y = -6284.53685414

satFlyBy_Forward.Z = -3598.94426638

satFlyBy_Forward.VX = 1.14614444527

satFlyBy_Forward.VY = -0.726070354598

satFlyBy_Forward.VZ = -0.617780594192

satMOI_Backward.X = -53541.9714485

satMOI_Backward.Y = -68231.6304631

satMOI_Backward.Z = -1272.77554803

satMOI_Backward.VX = 2.0799329871

satMOI_Backward.VY = -1.89082570193

satMOI_Backward.VZ = -0.284385092038

We see in this case the optimization converged and found essentially the same solution of

0.091762 km/s

Tutorials Optimal Lunar Flyby using Multiple Shooting

24

Step 5: Apply a New Constraint

We leave it as an exercise, to apply a constraint that the lunar flyby periapsis radius must be

greater than or equal to 5000 km.

